These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


228 related items for PubMed ID: 1560365

  • 21. Transepithelial transport of 4-chloro-2-methylphenoxyacetic acid (MCPA) across human intestinal Caco-2 cell monolayers.
    Kimura O, Tsukagoshi K, Hayasaka M, Endo T.
    Basic Clin Pharmacol Toxicol; 2012 Jun; 110(6):530-6. PubMed ID: 22181038
    [Abstract] [Full Text] [Related]

  • 22. [Absorption of papaverine, laudanosine and cepharanthine across human intestine by using human Caco-2 cells monolayers model].
    Ma L, Yang XW.
    Yao Xue Xue Bao; 2008 Feb; 43(2):202-7. PubMed ID: 18507350
    [Abstract] [Full Text] [Related]

  • 23. Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2.
    Tamura K, Lee CP, Smith PL, Borchardt RT.
    Pharm Res; 1996 Nov; 13(11):1663-7. PubMed ID: 8956331
    [Abstract] [Full Text] [Related]

  • 24. Distinct characteristics of transcellular transport between nicotine and tetraethylammonium in LLC-PK1 cells.
    Takami K, Saito H, Okuda M, Takano M, Inui KI.
    J Pharmacol Exp Ther; 1998 Aug; 286(2):676-80. PubMed ID: 9694920
    [Abstract] [Full Text] [Related]

  • 25. Transcellular transport of domoic acid across intestinal Caco-2 cell monolayers.
    Kimura O, Kotaki Y, Hamaue N, Haraguchi K, Endo T.
    Food Chem Toxicol; 2011 Sep; 49(9):2167-71. PubMed ID: 21672599
    [Abstract] [Full Text] [Related]

  • 26. Transport characteristics of zolmitriptan in a human intestinal epithelial cell line Caco-2.
    Yu L, Zeng S.
    J Pharm Pharmacol; 2007 May; 59(5):655-60. PubMed ID: 17524230
    [Abstract] [Full Text] [Related]

  • 27. Secretory mechanisms of grepafloxacin and levofloxacin in the human intestinal cell line caco-2.
    Yamaguchi H, Yano I, Hashimoto Y, Inui KI.
    J Pharmacol Exp Ther; 2000 Oct; 295(1):360-6. PubMed ID: 10992002
    [Abstract] [Full Text] [Related]

  • 28. Transport of hop bitter acids across intestinal Caco-2 cell monolayers.
    Cattoor K, Bracke M, Deforce D, De Keukeleire D, Heyerick A.
    J Agric Food Chem; 2010 Apr 14; 58(7):4132-40. PubMed ID: 20329731
    [Abstract] [Full Text] [Related]

  • 29. Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers.
    Carrière P, Mantha M, Champagne-Paradis S, Jumarie C.
    Biometals; 2011 Oct 14; 24(5):857-74. PubMed ID: 21424617
    [Abstract] [Full Text] [Related]

  • 30. Transport mechanisms responsible for the absorption of loracarbef, cefixime, and cefuroxime axetil into human intestinal Caco-2 cells.
    Dantzig AH, Duckworth DC, Tabas LB.
    Biochim Biophys Acta; 1994 Apr 20; 1191(1):7-13. PubMed ID: 8155686
    [Abstract] [Full Text] [Related]

  • 31. Transcellular transport of organic cation across monolayers of kidney epithelial cell line LLC-PK.
    Saito H, Yamamoto M, Inui K, Hori R.
    Am J Physiol; 1992 Jan 20; 262(1 Pt 1):C59-66. PubMed ID: 1310216
    [Abstract] [Full Text] [Related]

  • 32. Transport and metabolism of equol by Caco-2 human intestinal cells.
    Walsh KR, Failla ML.
    J Agric Food Chem; 2009 Sep 23; 57(18):8297-302. PubMed ID: 19715333
    [Abstract] [Full Text] [Related]

  • 33. Intestinal brush-border transport of the oral cephalosporin antibiotic, cefdinir, mediated by dipeptide and monocarboxylic acid transport systems in rabbits.
    Tsuji A, Tamai I, Nakanishi M, Terasaki T, Hamano S.
    J Pharm Pharmacol; 1993 Nov 23; 45(11):996-8. PubMed ID: 7908046
    [Abstract] [Full Text] [Related]

  • 34. Effect of side chains including the N-methyl-tetrazole-thiol group of beta-lactam antibiotics on transport in cultured kidney epithelial cells LLC-PK1.
    Goto K, Oda M, Saitoh H, Nishida M, Takada M.
    Biol Pharm Bull; 1998 Oct 23; 21(10):1113-6. PubMed ID: 9821822
    [Abstract] [Full Text] [Related]

  • 35. Apical-to-basolateral transepithelial transport of Ochratoxin A by two subtypes of Madin-Darby canine kidney cells.
    Schwerdt G, Gekle M, Freudinger R, Mildenberger S, Silbernagl S.
    Biochim Biophys Acta; 1997 Mar 13; 1324(2):191-9. PubMed ID: 9092706
    [Abstract] [Full Text] [Related]

  • 36. Transepithelial taurine transport in caco-2 cell monolayers.
    Roig-Pérez S, Moretó M, Ferrer R.
    J Membr Biol; 2005 Mar 13; 204(2):85-92. PubMed ID: 16151704
    [Abstract] [Full Text] [Related]

  • 37. Basolateral glycylsarcosine (Gly-Sar) transport in Caco-2 cell monolayers is pH dependent.
    Berthelsen R, Nielsen CU, Brodin B.
    J Pharm Pharmacol; 2013 Jul 13; 65(7):970-9. PubMed ID: 23738724
    [Abstract] [Full Text] [Related]

  • 38. Cefaclor uptake by the proton-dependent dipeptide transport carrier of human intestinal Caco-2 cells and comparison to cephalexin uptake.
    Dantzig AH, Tabas LB, Bergin L.
    Biochim Biophys Acta; 1992 Dec 09; 1112(2):167-73. PubMed ID: 1457450
    [Abstract] [Full Text] [Related]

  • 39. Function and immunolocalization of overexpressed human intestinal H+/peptide cotransporter in adenovirus-transduced Caco-2 cells.
    Hsu CP, Walter E, Merkle HP, Rothen-Rutishauser B, Wunderli-Allenspach H, Hilfinger JM, Amidon GL.
    AAPS PharmSci; 1999 Dec 09; 1(3):E12. PubMed ID: 11741208
    [Abstract] [Full Text] [Related]

  • 40. Comparison of bidirectional cephalexin transport across MDCK and caco-2 cell monolayers: interactions with peptide transporters.
    Putnam WS, Pan L, Tsutsui K, Takahashi L, Benet LZ.
    Pharm Res; 2002 Jan 09; 19(1):27-33. PubMed ID: 11837697
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.