These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 1560365
41. Transepithelial transport of diphenhydramine across monolayers of the human intestinal epithelial cell line Caco-2. Mizuuchi H, Katsura T, Hashimoto Y, Inui K. Pharm Res; 2000 May; 17(5):539-45. PubMed ID: 10888305 [Abstract] [Full Text] [Related]
42. Guanidine transport across the apical and basolateral membranes of human intestinal Caco-2 cells is mediated by two different mechanisms. Cova E, Laforenza U, Gastaldi G, Sambuy Y, Tritto S, Faelli A, Ventura U. J Nutr; 2002 Jul; 132(7):1995-2003. PubMed ID: 12097682 [Abstract] [Full Text] [Related]
43. Transepithelial transport of putrescine across monolayers of the human intestinal epithelial cell line, Caco-2. Milovic V, Turchanowa L, Stein J, Caspary WF. World J Gastroenterol; 2001 Apr; 7(2):193-7. PubMed ID: 11819759 [Abstract] [Full Text] [Related]
44. Transport of Antihypertensive Peptide RVPSL, Ovotransferrin 328-332, in Human Intestinal Caco-2 Cell Monolayers. Ding L, Wang L, Zhang Y, Liu J. J Agric Food Chem; 2015 Sep 23; 63(37):8143-50. PubMed ID: 26335384 [Abstract] [Full Text] [Related]
45. Transport characteristics of cephalosporin antibiotics across intestinal brush-border membrane in man, rat and rabbit. Sugawara M, Toda T, Iseki K, Miyazaki K, Shiroto H, Kondo Y, Uchino J. J Pharm Pharmacol; 1992 Dec 23; 44(12):968-72. PubMed ID: 1361560 [Abstract] [Full Text] [Related]
46. The Caco-2 cell monolayers as an intestinal metabolism model: metabolism of dipeptide Phe-Pro. Hu M, Chen J, Tran D, Zhu Y, Leonardo G. J Drug Target; 1994 Dec 23; 2(1):79-89. PubMed ID: 8069586 [Abstract] [Full Text] [Related]
47. Transport of phenylethylamine at intestinal epithelial (Caco-2) cells: mechanism and substrate specificity. Fischer W, Neubert RH, Brandsch M. Eur J Pharm Biopharm; 2010 Feb 23; 74(2):281-9. PubMed ID: 19962438 [Abstract] [Full Text] [Related]
48. Studies on intestinal absorption of sulpiride (2): transepithelial transport of sulpiride across the human intestinal cell line Caco-2. Watanabe K, Sawano T, Endo T, Sakata M, Sato J. Biol Pharm Bull; 2002 Oct 23; 25(10):1345-50. PubMed ID: 12392092 [Abstract] [Full Text] [Related]
49. p-Aminohippurate transport in apical and basolateral membranes of the OK kidney epithelial cells. Takano M, Hirozane K, Okamura M, Takayama A, Nagai J, Hori R. J Pharmacol Exp Ther; 1994 Jun 23; 269(3):970-5. PubMed ID: 8014884 [Abstract] [Full Text] [Related]
50. Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H(+)-coupled carriers at both apical and basal membranes. Thwaites DT, Brown CD, Hirst BH, Simmons NL. J Biol Chem; 1993 Apr 15; 268(11):7640-2. PubMed ID: 8463293 [Abstract] [Full Text] [Related]
51. Metabolism, uptake, and transepithelial transport of the diastereomers of Val-Val in the human intestinal cell line, Caco-2. Tamura K, Bhatnagar PK, Takata JS, Lee CP, Smith PL, Borchardt RT. Pharm Res; 1996 Aug 15; 13(8):1213-8. PubMed ID: 8865315 [Abstract] [Full Text] [Related]
52. The role of an alpha-amino group on H+ -dependent transepithelial transport of cephalosporins in Caco-2 cells. Raeissi SD, Li J, Hidalgo IJ. J Pharm Pharmacol; 1999 Jan 15; 51(1):35-40. PubMed ID: 10197415 [Abstract] [Full Text] [Related]
53. Substrate specificity of the di/tripeptide transporter in human intestinal epithelia (Caco-2): identification of substrates that undergo H(+)-coupled absorption. Thwaites DT, Hirst BH, Simmons NL. Br J Pharmacol; 1994 Nov 15; 113(3):1050-6. PubMed ID: 7858848 [Abstract] [Full Text] [Related]
54. H(+)-coupled alpha-methylaminoisobutyric acid transport in human intestinal Caco-2 cells. Thwaites DT, McEwan GT, Hirst BH, Simmons NL. Biochim Biophys Acta; 1995 Mar 08; 1234(1):111-8. PubMed ID: 7880851 [Abstract] [Full Text] [Related]
55. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Dantzig AH, Bergin L. Biochim Biophys Acta; 1990 Sep 07; 1027(3):211-7. PubMed ID: 2397233 [Abstract] [Full Text] [Related]
56. Caco-2 cell monolayers as a tool to study simultaneous phase II metabolism and metabolite efflux of indomethacin, paracetamol and 1-naphthol. Siissalo S, Laine L, Tolonen A, Kaukonen AM, Finel M, Hirvonen J. Int J Pharm; 2010 Jan 04; 383(1-2):24-9. PubMed ID: 19733645 [Abstract] [Full Text] [Related]
57. Liquid-chromatographic determination of five orally active cephalosporins--cefixime, cefaclor, cefadroxil, cephalexin, and cephradine--in human serum. McAteer JA, Hiltke MF, Silber BM, Faulkner RD. Clin Chem; 1987 Oct 04; 33(10):1788-90. PubMed ID: 3665031 [Abstract] [Full Text] [Related]
58. Transport of levofloxacin in the OK kidney epithelial cell line: interaction with p-aminohippurate transport. Matsuo Y, Yano I, Habu Y, Katsura T, Hashimoto Y, Inui K. Pharm Res; 2001 May 04; 18(5):573-8. PubMed ID: 11465410 [Abstract] [Full Text] [Related]
59. [Establishment and assessment of Caco-2 cell in vitro absorption model]. Zha LY, Luo HJ, Deng H, Chu XW. Nan Fang Yi Ke Da Xue Xue Bao; 2009 Mar 04; 29(3):548-50. PubMed ID: 19304551 [Abstract] [Full Text] [Related]
60. Phosphate depletion in opossum kidney cells: apical but not basolateral or transepithelial adaptions of Pi transport. Barac-Nieto M, Alfred M, Spitzer A. Exp Nephrol; 2001 Mar 04; 9(4):258-64. PubMed ID: 11423725 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]