These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
235 related items for PubMed ID: 15604680
1. Identification of genes preferentially expressed during wood formation in Eucalyptus. Paux E, Tamasloukht M, Ladouce N, Sivadon P, Grima-Pettenati J. Plant Mol Biol; 2004 May; 55(2):263-80. PubMed ID: 15604680 [Abstract] [Full Text] [Related]
2. Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. Foucart C, Paux E, Ladouce N, San-Clemente H, Grima-Pettenati J, Sivadon P. New Phytol; 2006 May; 170(4):739-52. PubMed ID: 16684235 [Abstract] [Full Text] [Related]
3. Identification and analysis of differentially expressed genes in differentiating xylem of Chinese fir (Cunninghamia lanceolata) by suppression subtractive hybridization. Wang G, Gao Y, Yang L, Shi J. Genome; 2007 Dec; 50(12):1141-55. PubMed ID: 18059541 [Abstract] [Full Text] [Related]
4. Large-scale statistical analysis of secondary xylem ESTs in pine. Pavy N, Laroche J, Bousquet J, Mackay J. Plant Mol Biol; 2005 Jan; 57(2):203-24. PubMed ID: 15821878 [Abstract] [Full Text] [Related]
5. [Identification and analysis of differentially expressed genes during wood formation in Chinese fir by SSH]. Wang GF, Gao Y, Yang LW, Shi JS. Yi Chuan; 2007 Apr; 29(4):483-9. PubMed ID: 17548313 [Abstract] [Full Text] [Related]
6. A new genomic resource dedicated to wood formation in Eucalyptus. Rengel D, San Clemente H, Servant F, Ladouce N, Paux E, Wincker P, Couloux A, Sivadon P, Grima-Pettenati J. BMC Plant Biol; 2009 Mar 27; 9():36. PubMed ID: 19327132 [Abstract] [Full Text] [Related]
7. Identification of genes involved in bamboo fiber development. Rai V, Ghosh JS, Pal A, Dey N. Gene; 2011 Jun 01; 478(1-2):19-27. PubMed ID: 21272623 [Abstract] [Full Text] [Related]
8. Within-tree transcriptome profiling in wood-forming tissues of a fast-growing Eucalyptus tree. Ranik M, Creux NM, Myburg AA. Tree Physiol; 2006 Mar 01; 26(3):365-75. PubMed ID: 16356907 [Abstract] [Full Text] [Related]
9. Transcript profiling of Eucalyptus xylem genes during tension wood formation. Paux E, Carocha V, Marques C, Mendes de Sousa A, Borralho N, Sivadon P, Grima-Pettenati J. New Phytol; 2005 Jul 01; 167(1):89-100. PubMed ID: 15948833 [Abstract] [Full Text] [Related]
10. Comprehensive genome-wide analysis of the Aux/IAA gene family in Eucalyptus: evidence for the role of EgrIAA4 in wood formation. Yu H, Soler M, San Clemente H, Mila I, Paiva JA, Myburg AA, Bouzayen M, Grima-Pettenati J, Cassan-Wang H. Plant Cell Physiol; 2015 Apr 01; 56(4):700-14. PubMed ID: 25577568 [Abstract] [Full Text] [Related]
11. Identification of differentially-expressed genes potentially implicated in drought response in pitaya (Hylocereus undatus) by suppression subtractive hybridization and cDNA microarray analysis. Fan QJ, Yan FX, Qiao G, Zhang BX, Wen XP. Gene; 2014 Jan 01; 533(1):322-31. PubMed ID: 24076355 [Abstract] [Full Text] [Related]
12. Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don. Li X, Wu HX, Dillon SK, Southerton SG. BMC Genomics; 2009 Jan 21; 10():41. PubMed ID: 19159482 [Abstract] [Full Text] [Related]
13. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem. Hussey SG, Mizrachi E, Groover A, Berger DK, Myburg AA. BMC Plant Biol; 2015 May 10; 15():117. PubMed ID: 25957781 [Abstract] [Full Text] [Related]
14. SAGE transcript profiling of the juvenile cambial region of Eucalyptus grandis. Gallo de Carvalho MC, Caldas DG, Carneiro RT, Moon DH, Salvatierra GR, Franceschini LM, de Andrade A, Celedon PA, Oda S, Labate CA. Tree Physiol; 2008 Jun 10; 28(6):905-19. PubMed ID: 18381271 [Abstract] [Full Text] [Related]
15. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plasencia A, Soler M, Dupas A, Ladouce N, Silva-Martins G, Martinez Y, Lapierre C, Franche C, Truchet I, Grima-Pettenati J. Plant Biotechnol J; 2016 Jun 10; 14(6):1381-93. PubMed ID: 26579999 [Abstract] [Full Text] [Related]
16. Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis. Hefer CA, Mizrachi E, Myburg AA, Douglas CJ, Mansfield SD. New Phytol; 2015 Jun 10; 206(4):1391-405. PubMed ID: 25659405 [Abstract] [Full Text] [Related]
17. Differential representation of sunflower ESTs in enriched organ-specific cDNA libraries in a small scale sequencing project. Fernández P, Paniego N, Lew S, Hopp HE, Heinz RA. BMC Genomics; 2003 Sep 30; 4(1):40. PubMed ID: 14519210 [Abstract] [Full Text] [Related]
18. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, Jin Y, Gao P, Zhang J, Bai Y, Wang G. Plant Mol Biol; 2004 Aug 30; 55(6):807-23. PubMed ID: 15604718 [Abstract] [Full Text] [Related]
19. Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress. Lu S, Li L, Yi X, Joshi CP, Chiang VL. J Exp Bot; 2008 Aug 30; 59(3):681-95. PubMed ID: 18281718 [Abstract] [Full Text] [Related]
20. A microarray-based method for the parallel analysis of genotypes and expression profiles of wood-forming tissues in Eucalyptus grandis. Barros E, van Staden CA, Lezar S. BMC Biotechnol; 2009 May 27; 9():51. PubMed ID: 19473481 [Abstract] [Full Text] [Related] Page: [Next] [New Search]