These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


331 related items for PubMed ID: 15604725

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence.
    Sakuraba Y, Park SY, Kim YS, Wang SH, Yoo SC, Hörtensteiner S, Paek NC.
    Mol Plant; 2014 Aug; 7(8):1288-1302. PubMed ID: 24719469
    [Abstract] [Full Text] [Related]

  • 3. Deregulated chlorophyll b synthesis reduces the energy transfer rate between photosynthetic pigments and induces photodamage in Arabidopsis thaliana.
    Sakuraba Y, Yokono M, Akimoto S, Tanaka R, Tanaka A.
    Plant Cell Physiol; 2010 Jun; 51(6):1055-65. PubMed ID: 20403808
    [Abstract] [Full Text] [Related]

  • 4. Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis.
    Rissler HM, Collakova E, DellaPenna D, Whelan J, Pogson BJ.
    Plant Physiol; 2002 Feb; 128(2):770-9. PubMed ID: 11842180
    [Abstract] [Full Text] [Related]

  • 5. Overproduction of chl B retards senescence through transcriptional reprogramming in Arabidopsis.
    Sakuraba Y, Balazadeh S, Tanaka R, Mueller-Roeber B, Tanaka A.
    Plant Cell Physiol; 2012 Mar; 53(3):505-17. PubMed ID: 22285931
    [Abstract] [Full Text] [Related]

  • 6. Research Progress in the Interconversion, Turnover and Degradation of Chlorophyll.
    Hu X, Gu T, Khan I, Zada A, Jia T.
    Cells; 2021 Nov 12; 10(11):. PubMed ID: 34831365
    [Abstract] [Full Text] [Related]

  • 7. Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana.
    Tanaka R, Tanaka A.
    Photosynth Res; 2005 Sep 12; 85(3):327-40. PubMed ID: 16170635
    [Abstract] [Full Text] [Related]

  • 8. Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes.
    Zhu X, Chen J, Xie Z, Gao J, Ren G, Gao S, Zhou X, Kuai B.
    Plant J; 2015 Nov 12; 84(3):597-610. PubMed ID: 26407000
    [Abstract] [Full Text] [Related]

  • 9. Chlorophyll degradation during senescence.
    Hörtensteiner S.
    Annu Rev Plant Biol; 2006 Nov 12; 57():55-77. PubMed ID: 16669755
    [Abstract] [Full Text] [Related]

  • 10. Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene expression profiling.
    Bang WY, Jeong IS, Kim DW, Im CH, Ji C, Hwang SM, Kim SW, Son YS, Jeong J, Shiina T, Bahk JD.
    Plant Cell Physiol; 2008 Sep 12; 49(9):1350-63. PubMed ID: 18682427
    [Abstract] [Full Text] [Related]

  • 11. Altered levels of LIL3 isoforms in Arabidopsis lead to disturbed pigment-protein assembly and chlorophyll synthesis, chlorotic phenotype and impaired photosynthetic performance.
    Lohscheider JN, Rojas-Stütz MC, Rothbart M, Andersson U, Funck D, Mendgen K, Grimm B, Adamska I.
    Plant Cell Environ; 2015 Oct 12; 38(10):2115-27. PubMed ID: 25808681
    [Abstract] [Full Text] [Related]

  • 12. GluTR2 complements a hema1 mutant lacking glutamyl-tRNA reductase 1, but is differently regulated at the post-translational level.
    Apitz J, Schmied J, Lehmann MJ, Hedtke B, Grimm B.
    Plant Cell Physiol; 2014 Mar 12; 55(3):645-57. PubMed ID: 24449654
    [Abstract] [Full Text] [Related]

  • 13. Tetrapyrrole biosynthesis in higher plants.
    Tanaka R, Tanaka A.
    Annu Rev Plant Biol; 2007 Mar 12; 58():321-46. PubMed ID: 17227226
    [Abstract] [Full Text] [Related]

  • 14. Subcellular localization of chlorophyllase2 reveals it is not involved in chlorophyll degradation during senescence in Arabidopsis thaliana.
    Hu X, Jia T, Hörtensteiner S, Tanaka A, Tanaka R.
    Plant Sci; 2020 Jan 12; 290():110314. PubMed ID: 31779896
    [Abstract] [Full Text] [Related]

  • 15. Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis.
    Ren G, Zhou Q, Wu S, Zhang Y, Zhang L, Huang J, Sun Z, Kuai B.
    J Integr Plant Biol; 2010 May 12; 52(5):496-504. PubMed ID: 20537045
    [Abstract] [Full Text] [Related]

  • 16. NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection.
    Chai MF, Chen QJ, An R, Chen YM, Chen J, Wang XC.
    Plant Mol Biol; 2005 Nov 12; 59(4):553-64. PubMed ID: 16244906
    [Abstract] [Full Text] [Related]

  • 17. AtACDO1, an ABC1-like kinase gene, is involved in chlorophyll degradation and the response to photooxidative stress in Arabidopsis.
    Yang S, Zeng X, Li T, Liu M, Zhang S, Gao S, Wang Y, Peng C, Li L, Yang C.
    J Exp Bot; 2012 Jun 12; 63(10):3959-73. PubMed ID: 22447966
    [Abstract] [Full Text] [Related]

  • 18. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana.
    Oster U, Tanaka R, Tanaka A, Rüdiger W.
    Plant J; 2000 Feb 12; 21(3):305-10. PubMed ID: 10758481
    [Abstract] [Full Text] [Related]

  • 19. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis.
    Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J.
    Plant Physiol; 2007 Sep 12; 145(1):29-40. PubMed ID: 17535821
    [Abstract] [Full Text] [Related]

  • 20. Nucleus-encoded light-harvesting chlorophyll a/b proteins are imported normally into chlorophyll b-free chloroplasts of Arabidopsis.
    Nick S, Meurer J, Soll J, Ankele E.
    Mol Plant; 2013 May 12; 6(3):860-71. PubMed ID: 23041941
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.