These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


402 related items for PubMed ID: 15617764

  • 1. The relationship between relative eye usage and ocular dominance shifts in cat visual cortex.
    Mower GD.
    Brain Res Dev Brain Res; 2005 Jan 01; 154(1):147-51. PubMed ID: 15617764
    [Abstract] [Full Text] [Related]

  • 2. Stimulus for rapid ocular dominance plasticity in visual cortex.
    Rittenhouse CD, Siegler BA, Voelker CC, Shouval HZ, Paradiso MA, Bear MF.
    J Neurophysiol; 2006 May 01; 95(5):2947-50. PubMed ID: 16481452
    [Abstract] [Full Text] [Related]

  • 3. Lifelong learning: ocular dominance plasticity in mouse visual cortex.
    Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hübener M.
    Curr Opin Neurobiol; 2006 Aug 01; 16(4):451-9. PubMed ID: 16837188
    [Abstract] [Full Text] [Related]

  • 4. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L, Cerri C, Pietrasanta M, Gianfranceschi L, Maffei L, Caleo M.
    Neuron; 2009 Dec 10; 64(5):707-18. PubMed ID: 20005826
    [Abstract] [Full Text] [Related]

  • 5. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY, Bear MF.
    Neuron; 2004 Dec 16; 44(6):917-23. PubMed ID: 15603735
    [Abstract] [Full Text] [Related]

  • 6. Neural plasticity maintained high by activation of cyclic AMP-dependent protein kinase: an age-independent, general mechanism in cat striate cortex.
    Imamura K, Kasamatsu T, Tanaka S.
    Neuroscience; 2007 Jun 29; 147(2):508-21. PubMed ID: 17544224
    [Abstract] [Full Text] [Related]

  • 7. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L, Yong H, Song Q, Wei Y, Qin R, Zhang G, Xu M, Zhang S.
    Exp Eye Res; 2013 Apr 29; 109():17-21. PubMed ID: 23370270
    [Abstract] [Full Text] [Related]

  • 8. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex.
    Nakagama H, Tani T, Tanaka S.
    Neurosci Res; 2006 Aug 29; 55(4):370-82. PubMed ID: 16780978
    [Abstract] [Full Text] [Related]

  • 9. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME, Pham TA, Gordon B.
    Vision Res; 2004 Dec 29; 44(28):3381-7. PubMed ID: 15536006
    [Abstract] [Full Text] [Related]

  • 10. Reduced ocular dominance plasticity and long-term potentiation in the developing visual cortex of protein kinase A RII alpha mutant mice.
    Rao Y, Fischer QS, Yang Y, McKnight GS, LaRue A, Daw NW.
    Eur J Neurosci; 2004 Aug 29; 20(3):837-42. PubMed ID: 15255994
    [Abstract] [Full Text] [Related]

  • 11. Early alcohol exposure impairs ocular dominance plasticity throughout the critical period.
    Medina AE, Ramoa AS.
    Brain Res Dev Brain Res; 2005 Jun 09; 157(1):107-11. PubMed ID: 15939092
    [Abstract] [Full Text] [Related]

  • 12. Experience-dependent orientation plasticity in the visual cortex of rats chronically exposed to a single orientation.
    O'Hashi K, Miyashita M, Tanaka S.
    Neurosci Res; 2007 May 09; 58(1):86-90. PubMed ID: 17300846
    [Abstract] [Full Text] [Related]

  • 13. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD, Hofer SB, Ohki K, Reid RC, Bonhoeffer T, Hübener M.
    Neuron; 2007 Jun 21; 54(6):961-72. PubMed ID: 17582335
    [Abstract] [Full Text] [Related]

  • 14. Effects of strabismus and monocular deprivation on the eye preference of neurons in the visual claustrum of the cat.
    Perkel DJ, LeVay S.
    J Comp Neurol; 1984 Dec 01; 230(2):269-77. PubMed ID: 6512021
    [Abstract] [Full Text] [Related]

  • 15. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y, Inaba M, Yamada K, Kurotani T, Begum T, Reza F, Maruyama T, Komatsu Y.
    Eur J Neurosci; 2008 Aug 01; 28(4):730-43. PubMed ID: 18657180
    [Abstract] [Full Text] [Related]

  • 16. Optical imaging in cat area 18: strabismus does not enhance the segregation of ocular dominance domains.
    Schmidt KF, Löwel S.
    Neuroimage; 2006 Jan 15; 29(2):439-45. PubMed ID: 16125976
    [Abstract] [Full Text] [Related]

  • 17. Plasticity in the visual system: role of neurotrophins and electrical activity.
    Maffei L.
    Arch Ital Biol; 2002 Oct 15; 140(4):341-6. PubMed ID: 12228987
    [Abstract] [Full Text] [Related]

  • 18. Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex.
    Khibnik LA, Cho KK, Bear MF.
    Neuron; 2010 May 27; 66(4):493-500. PubMed ID: 20510854
    [Abstract] [Full Text] [Related]

  • 19. Reversible blockade of experience-dependent plasticity by calcineurin in mouse visual cortex.
    Yang Y, Fischer QS, Zhang Y, Baumgärtel K, Mansuy IM, Daw NW.
    Nat Neurosci; 2005 Jun 27; 8(6):791-6. PubMed ID: 15880107
    [Abstract] [Full Text] [Related]

  • 20. Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity.
    Chapman B, Jacobson MD, Reiter HO, Stryker MP.
    Nature; 2005 Jun 27; 324(6093):154-6. PubMed ID: 3785380
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.