These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


385 related items for PubMed ID: 15618792

  • 1. Molecular mechanisms underlying ketamine-mediated inhibition of sarcolemmal adenosine triphosphate-sensitive potassium channels.
    Kawano T, Oshita S, Takahashi A, Tsutsumi Y, Tanaka K, Tomiyama Y, Kitahata H, Nakaya Y.
    Anesthesiology; 2005 Jan; 102(1):93-101. PubMed ID: 15618792
    [Abstract] [Full Text] [Related]

  • 2. Molecular mechanisms of the inhibitory effects of bupivacaine, levobupivacaine, and ropivacaine on sarcolemmal adenosine triphosphate-sensitive potassium channels in the cardiovascular system.
    Kawano T, Oshita S, Takahashi A, Tsutsumi Y, Tomiyama Y, Kitahata H, Kuroda Y, Nakaya Y.
    Anesthesiology; 2004 Aug; 101(2):390-8. PubMed ID: 15277922
    [Abstract] [Full Text] [Related]

  • 3. Molecular mechanisms of the inhibitory effects of propofol and thiamylal on sarcolemmal adenosine triphosphate-sensitive potassium channels.
    Kawano T, Oshita S, Takahashi A, Tsutsumi Y, Tomiyama Y, Kitahata H, Kuroda Y, Nakaya Y.
    Anesthesiology; 2004 Feb; 100(2):338-46. PubMed ID: 14739809
    [Abstract] [Full Text] [Related]

  • 4. Effects of intracellular MgADP and acidification on the inhibition of cardiac sarcolemmal ATP-sensitive potassium channels by propofol.
    Yamada H, Kawano T, Tanaka K, Yasui S, Mawatari K, Takahashi A, Nakaya Y, Oshita S.
    J Anesth; 2007 Feb; 21(4):472-9. PubMed ID: 18008114
    [Abstract] [Full Text] [Related]

  • 5. Differential effects of etomidate and midazolam on vascular adenosine triphosphate-sensitive potassium channels: isometric tension and patch clamp studies.
    Nakamura A, Kawahito S, Kawano T, Nazari H, Takahashi A, Kitahata H, Nakaya Y, Oshita S.
    Anesthesiology; 2007 Mar; 106(3):515-22. PubMed ID: 17325510
    [Abstract] [Full Text] [Related]

  • 6. The Kir6.2-F333I mutation differentially modulates KATP channels composed of SUR1 or SUR2 subunits.
    Tammaro P, Ashcroft F.
    J Physiol; 2007 Jun 15; 581(Pt 3):1259-69. PubMed ID: 17395632
    [Abstract] [Full Text] [Related]

  • 7. Stoichiometry of sulfonylurea-induced ATP-sensitive potassium channel closure.
    Dörschner H, Brekardin E, Uhde I, Schwanstecher C, Schwanstecher M.
    Mol Pharmacol; 1999 Jun 15; 55(6):1060-6. PubMed ID: 10347249
    [Abstract] [Full Text] [Related]

  • 8. Reconstituted human cardiac KATP channels: functional identity with the native channels from the sarcolemma of human ventricular cells.
    Babenko AP, Gonzalez G, Aguilar-Bryan L, Bryan J.
    Circ Res; 1998 Nov 30; 83(11):1132-43. PubMed ID: 9831708
    [Abstract] [Full Text] [Related]

  • 9. Different molecular sites of action for the KATP channel inhibitors, PNU-99963 and PNU-37883A.
    Cui Y, Tinker A, Clapp LH.
    Br J Pharmacol; 2003 May 30; 139(1):122-8. PubMed ID: 12746230
    [Abstract] [Full Text] [Related]

  • 10. Molecular mechanisms of the inhibitory effects of clonidine on vascular adenosine triphosphate-sensitive potassium channels.
    Kawahito S, Kawano T, Kitahata H, Oto J, Takahashi A, Takaishi K, Harada N, Nakagawa T, Kinoshita H, Azma T, Nakaya Y, Oshita S.
    Anesth Analg; 2011 Dec 30; 113(6):1374-80. PubMed ID: 22003223
    [Abstract] [Full Text] [Related]

  • 11. Antisense oligodeoxynucleotides of sulfonylurea receptors inhibit ATP-sensitive K+ channels in cultured neonatal rat ventricular cells.
    Yokoshiki H, Sunagawa M, Seki T, Sperelakis N.
    Pflugers Arch; 1999 Feb 30; 437(3):400-8. PubMed ID: 9914396
    [Abstract] [Full Text] [Related]

  • 12. Nateglinide, a D-phenylalanine derivative lacking either a sulfonylurea or benzamido moiety, specifically inhibits pancreatic beta-cell-type K(ATP) channels.
    Chachin M, Yamada M, Fujita A, Matsuoka T, Matsushita K, Kurachi Y.
    J Pharmacol Exp Ther; 2003 Mar 30; 304(3):1025-32. PubMed ID: 12604678
    [Abstract] [Full Text] [Related]

  • 13. Interaction of a novel dihydropyridine K+ channel opener, A-312110, with recombinant sulphonylurea receptors and KATP channels: comparison with the cyanoguanidine P1075.
    Felsch H, Lange U, Hambrock A, Löffler-Walz C, Russ U, Carroll WA, Gopalakrishnan M, Quast U.
    Br J Pharmacol; 2004 Apr 30; 141(7):1098-105. PubMed ID: 15023854
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Sensitivity of KATP channels to cellular metabolic disorders and the underlying structural basis.
    Li CG, Cui WY, Wang H.
    Acta Pharmacol Sin; 2016 Jan 30; 37(1):134-42. PubMed ID: 26725741
    [Abstract] [Full Text] [Related]

  • 16. Altered functional properties of KATP channel conferred by a novel splice variant of SUR1.
    Sakura H, Trapp S, Liss B, Ashcroft FM.
    J Physiol; 1999 Dec 01; 521 Pt 2(Pt 2):337-50. PubMed ID: 10581306
    [Abstract] [Full Text] [Related]

  • 17. Potassium channel openers require ATP to bind to and act through sulfonylurea receptors.
    Schwanstecher M, Sieverding C, Dörschner H, Gross I, Aguilar-Bryan L, Schwanstecher C, Bryan J.
    EMBO J; 1998 Oct 01; 17(19):5529-35. PubMed ID: 9755153
    [Abstract] [Full Text] [Related]

  • 18. Role of the C-terminus of SUR in the differential regulation of β-cell and cardiac KATP channels by MgADP and metabolism.
    Vedovato N, Rorsman O, Hennis K, Ashcroft FM, Proks P.
    J Physiol; 2018 Dec 01; 596(24):6205-6217. PubMed ID: 30179258
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Proximal C-terminal domain of sulphonylurea receptor 2A interacts with pore-forming Kir6 subunits in KATP channels.
    Rainbow RD, James M, Hudman D, Al Johi M, Singh H, Watson PJ, Ashmole I, Davies NW, Lodwick D, Norman RI.
    Biochem J; 2004 Apr 01; 379(Pt 1):173-81. PubMed ID: 14672537
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.