These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
538 related items for PubMed ID: 15623362
1. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Hornby TG, Zemon DH, Campbell D. Phys Ther; 2005 Jan; 85(1):52-66. PubMed ID: 15623362 [Abstract] [Full Text] [Related]
2. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Israel JF, Campbell DD, Kahn JH, Hornby TG. Phys Ther; 2006 Nov; 86(11):1466-78. PubMed ID: 17079746 [Abstract] [Full Text] [Related]
3. Training of walking skills overground and on the treadmill: case series on individuals with incomplete spinal cord injury. Musselman KE, Fouad K, Misiaszek JE, Yang JF. Phys Ther; 2009 Jun; 89(6):601-11. PubMed ID: 19423643 [Abstract] [Full Text] [Related]
4. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, Williamson J. Neurorehabil Neural Repair; 2005 Dec; 19(4):313-24. PubMed ID: 16263963 [Abstract] [Full Text] [Related]
5. Robotic orthoses for body weight-supported treadmill training. Winchester P, Querry R. Phys Med Rehabil Clin N Am; 2006 Feb; 17(1):159-72. PubMed ID: 16517349 [Abstract] [Full Text] [Related]
6. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study. Wu M, Landry JM, Schmit BD, Hornby TG, Yen SC. Arch Phys Med Rehabil; 2012 May; 93(5):782-9. PubMed ID: 22459697 [Abstract] [Full Text] [Related]
7. Using robot-applied resistance to augment body-weight-supported treadmill training in an individual with incomplete spinal cord injury. Lam T, Pauhl K, Krassioukov A, Eng JJ. Phys Ther; 2011 Jan; 91(1):143-51. PubMed ID: 21127165 [Abstract] [Full Text] [Related]
8. Supported treadmill ambulation training after spinal cord injury: a pilot study. Protas EJ, Holmes SA, Qureshy H, Johnson A, Lee D, Sherwood AM. Arch Phys Med Rehabil; 2001 Jun; 82(6):825-31. PubMed ID: 11387590 [Abstract] [Full Text] [Related]
9. Body weight supported treadmill training at very low treatment frequency for a young adult with incomplete cervical spinal cord injury. Young DL, Wallmann HW, Poole I, Threlkeld AJ. NeuroRehabilitation; 2009 Jun; 25(4):261-70. PubMed ID: 20037219 [Abstract] [Full Text] [Related]
10. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Lo AC, Triche EW. Neurorehabil Neural Repair; 2008 Jun; 22(6):661-71. PubMed ID: 18971381 [Abstract] [Full Text] [Related]
11. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. Carhart MR, He J, Herman R, D'Luzansky S, Willis WT. IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):32-42. PubMed ID: 15068185 [Abstract] [Full Text] [Related]
12. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury. Field-Fote EC. Phys Ther; 2000 May; 80(5):477-84. PubMed ID: 10792858 [Abstract] [Full Text] [Related]
13. Relationship between ASIA examination and functional outcomes in the NeuroRecovery Network Locomotor Training Program. Buehner JJ, Forrest GF, Schmidt-Read M, White S, Tansey K, Basso DM. Arch Phys Med Rehabil; 2012 Sep; 93(9):1530-40. PubMed ID: 22920450 [Abstract] [Full Text] [Related]
14. [A robotic system for gait re-education in patients with an incomplete spinal cord injury]. Esclarín-De Ruz A, Alcobendas-Maestro M, Casado-López R, Muñoz-Gonzalez A, Florido-Sánchez MA, González-Valdizán E. Rev Neurol; 2012 Sep; 49(12):617-22. PubMed ID: 20013712 [Abstract] [Full Text] [Related]
15. Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Field-Fote EC. Arch Phys Med Rehabil; 2001 Jun; 82(6):818-24. PubMed ID: 11387589 [Abstract] [Full Text] [Related]
16. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial. Alcobendas-Maestro M, Esclarín-Ruz A, Casado-López RM, Muñoz-González A, Pérez-Mateos G, González-Valdizán E, Martín JL. Neurorehabil Neural Repair; 2012 Jun; 26(9):1058-63. PubMed ID: 22699827 [Abstract] [Full Text] [Related]
17. Computerized visual feedback: an adjunct to robotic-assisted gait training. Banz R, Bolliger M, Colombo G, Dietz V, Lünenburger L. Phys Ther; 2008 Oct; 88(10):1135-45. PubMed ID: 18772279 [Abstract] [Full Text] [Related]
18. Daily stepping in individuals with motor incomplete spinal cord injury. Saraf P, Rafferty MR, Moore JL, Kahn JH, Hendron K, Leech K, Hornby TG. Phys Ther; 2010 Feb; 90(2):224-35. PubMed ID: 20022997 [Abstract] [Full Text] [Related]
19. Acute effects of locomotor training on neuromuscular and metabolic profile after incomplete spinal cord injury. Gorgey AS, Poarch H, Harnish C, Miller JM, Dolbow D, Gater DR. NeuroRehabilitation; 2011 Feb; 29(1):79-83. PubMed ID: 21876299 [Abstract] [Full Text] [Related]
20. Spinal decompression sickness presenting as partial Brown-Sequard syndrome and treated with robotic-assisted body-weight support treadmill training. Moreh E, Meiner Z, Neeb M, Hiller N, Schwartz I. J Rehabil Med; 2009 Jan; 41(1):88-9. PubMed ID: 19197576 [Abstract] [Full Text] [Related] Page: [Next] [New Search]