These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
89 related items for PubMed ID: 15625890
1. Kinetic studies of the reduction of Pseudomonas aeruginosa ferricytochrome c551 by Fe(EDTA)2-. Coyle CL, Gray HB. Biochem Biophys Res Commun; 1976 Dec 20; 73(4):1122-7. PubMed ID: 15625890 [Abstract] [Full Text] [Related]
2. Electron transfer between azurin from Alcaligenes faecalis and cytochrome c551 from Pseudomonas aeruginosa. Rosen P, Segal M, Pecht I. Eur J Biochem; 1981 Nov 20; 120(2):339-44. PubMed ID: 6274637 [Abstract] [Full Text] [Related]
3. Electron self-exchange in Pseudomonas cytochromes. Timkovich R, Cai ML, Dixon DW. Biochem Biophys Res Commun; 1988 Feb 15; 150(3):1044-50. PubMed ID: 2829889 [Abstract] [Full Text] [Related]
4. Kinetics of Pseudomonas aeruginosa cytochrome c551 and cytochrome oxidase oxidation by Co(phen)3(3+) and Mn(CyDTA)(H2O)-. Tordi MG, Silvestrini MC, Adzamli K, Brunori M. J Inorg Biochem; 1987 Jul 15; 30(3):155-66. PubMed ID: 2821190 [Abstract] [Full Text] [Related]
5. Control of the redox potential of Pseudomonas aeruginosa cytochrome c551 through the Fe-Met coordination bond strength and pKa of a buried heme propionic acid side chain. Takayama SJ, Mikami S, Terui N, Mita H, Hasegawa J, Sambongi Y, Yamamoto Y. Biochemistry; 2005 Apr 12; 44(14):5488-94. PubMed ID: 15807542 [Abstract] [Full Text] [Related]
6. Effect of the redox-dependent ionization state of the heme propionic acid side chain on the entropic contribution to the redox potential of Pseudomonas aeruginosa cytochrome c551. Mikami S, Tai H, Yamamoto Y. Biochemistry; 2009 Aug 25; 48(33):8062-9. PubMed ID: 19627115 [Abstract] [Full Text] [Related]
7. [Oxidation by nitrite of azurin and cytochrome c-551 from Pseudomonas aeruginosa]. Kamalian MG, Karapetian AV, Nalbandian RM. Biokhimiia; 1987 Apr 25; 52(4):638-42. PubMed ID: 3036256 [Abstract] [Full Text] [Related]
8. Electrostatic and steric control of electron self-exchange in cytochromes c, c551, and b5. Dixon DW, Hong X, Woehler SE. Biophys J; 1989 Aug 25; 56(2):339-51. PubMed ID: 2550090 [Abstract] [Full Text] [Related]
9. Reduction of horse heart ferricytochrome c by bovine liver ferrocytochrome b5. Experimental and theoretical analysis. Eltis LD, Herbert RG, Barker PD, Mauk AG, Northrup SH. Biochemistry; 1991 Apr 16; 30(15):3663-74. PubMed ID: 1849735 [Abstract] [Full Text] [Related]
10. Conformational equilibria accompanying the electron transfer between cytochrome c (P551) and azurin from Pseudomonas aeruginosa. Rosen P, Pecht I. Biochemistry; 1976 Feb 24; 15(4):775-86. PubMed ID: 174718 [Abstract] [Full Text] [Related]
11. Two-dimensional 1H NMR spectra of ferricytochrome c551 from Pseudomonas aeruginosa. Moratal JM, Donaire A, Salgado J, Jiménez HR, Castells J, Piccioli M. FEBS Lett; 1993 Jun 21; 324(3):305-8. PubMed ID: 8405371 [Abstract] [Full Text] [Related]
12. Kinetics of the oxidation of Rhus vernicifera stellacyanin by the Co(EDTA)-- ion. Yoneda GS, Holwerda RA. Bioinorg Chem; 1978 Jun 21; 8(2):139-59. PubMed ID: 147715 [Abstract] [Full Text] [Related]
13. Electron transfer kinetics between Rhus vernicifera stellacyanin and cytochrome c (horse heart cytochrome c and Pseudomonas cytochrome c551). Wilson MT, Silvestrini MC, Morpurgo L, Brunori M. J Inorg Biochem; 1979 Oct 21; 11(2):95-100. PubMed ID: 228006 [Abstract] [Full Text] [Related]
14. Cytochrome c-551 and azurin oxidation catalysed by Pseudomonas aeruginosa cytochrome oxidase. A steady-state kinetic study. Tordi MG, Silvestrini MC, Colosimo A, Tuttobello L, Brunori M. Biochem J; 1985 Sep 15; 230(3):797-805. PubMed ID: 2998333 [Abstract] [Full Text] [Related]
15. Solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa as determined by two-dimensional 1H NMR. Detlefsen DJ, Thanabal V, Pecoraro VL, Wagner G. Biochemistry; 1991 Sep 17; 30(37):9040-6. PubMed ID: 1654086 [Abstract] [Full Text] [Related]
16. Interpretation of effects of pH on rate constants for the oxidation of three ferrocytochromes c-551 with [Fe(CN)6]3- and [Co(phen)3]3+, and assignment of pKa values. de Silva DG, Sykes AG. Biochim Biophys Acta; 1988 Feb 10; 952(3):334-41. PubMed ID: 2827782 [Abstract] [Full Text] [Related]
17. The kinetics of electron transfer between pseudomonas aeruginosa cytochrome c-551 and its oxidase. Silvestrini MC, Tordi MG, Colosimo A, Antonini E, Brunori M. Biochem J; 1982 May 01; 203(2):445-51. PubMed ID: 6288000 [Abstract] [Full Text] [Related]
18. The oxidation of ferrocytochrome c in nonbinding buffer. Peterman BF, Morton RA. Can J Biochem; 1977 Aug 01; 55(8):796-803. PubMed ID: 196725 [Abstract] [Full Text] [Related]
19. Cytochrome oxidase from Pseudomonas aeruginosa. III. Reduction of hydroxylamine. Singh J. Biochim Biophys Acta; 1974 Jan 18; 333(1):28-36. PubMed ID: 19396990 [Abstract] [Full Text] [Related]
20. Comparative studies of monohemic bacterial C-type cytochromes. Redox and optical properties of Desulfovibrio desulfuricans Norway cytochrome C553(550) and Pseudomonas aeruginosa cytochrome C551. Bianco P, Haladjian J, Loutfi M, Bruschi M. Biochem Biophys Res Commun; 1983 Jun 15; 113(2):526-30. PubMed ID: 6307291 [Abstract] [Full Text] [Related] Page: [Next] [New Search]