These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Increased aortic intima-media thickness in 11-year-old healthy children with persistent Chlamydia pneumoniae seropositivity. Volanen I, Järvisalo MJ, Vainionpää R, Arffman M, Kallio K, Anglé S, Rönnemaa T, Viikari J, Marniemi J, Raitakari OT, Simell O. Arterioscler Thromb Vasc Biol; 2006 Mar; 26(3):649-55. PubMed ID: 16397138 [Abstract] [Full Text] [Related]
44. [The significance of Chlamydia pneumoniae in selected neurologic disorders]. Horváth Z, Vécsei L. Ideggyogy Sz; 2006 Jan 20; 59(1-2):4-16. PubMed ID: 16491568 [Abstract] [Full Text] [Related]
45. [Frontier of mycobacterium research--host vs. mycobacterium]. Okada M, Shirakawa T. Kekkaku; 2005 Sep 20; 80(9):613-29. PubMed ID: 16245793 [Abstract] [Full Text] [Related]
46. Antigenome technology: a novel approach for the selection of bacterial vaccine candidate antigens. Meinke A, Henics T, Hanner M, Minh DB, Nagy E. Vaccine; 2005 Mar 18; 23(17-18):2035-41. PubMed ID: 15755567 [Abstract] [Full Text] [Related]
47. Chlamydia pneumoniae burden in carotid arteries is associated with upregulation of plaque interleukin-6 and elevated C-reactive protein in serum. Johnston SC, Zhang H, Messina LM, Lawton MT, Dean D. Arterioscler Thromb Vasc Biol; 2005 Dec 18; 25(12):2648-53. PubMed ID: 16210572 [Abstract] [Full Text] [Related]
49. Vaccines against chlamydial infections--a complex but effective strategy for disease control. Woldehiwet Z. Vet J; 2006 Mar 18; 171(2):200-3. PubMed ID: 16490702 [No Abstract] [Full Text] [Related]
50. Leishmania donovani: identification of novel vaccine candidates using human reactive sera and cell lines. Arora SK, Pal NS, Mujtaba S. Exp Parasitol; 2005 Mar 18; 109(3):163-70. PubMed ID: 15713447 [Abstract] [Full Text] [Related]
52. Immunogenicity and protection against genital Chlamydia infection and its complications by a multisubunit candidate vaccine. Ifere GO, He Q, Igietseme JU, Ananaba GA, Lyn D, Lubitz W, Kellar KL, Black CM, Eko FO. J Microbiol Immunol Infect; 2007 Jun 18; 40(3):188-200. PubMed ID: 17639158 [Abstract] [Full Text] [Related]
54. Intragastric primary infection sensitizes to lung reinfection in a Chlamydia pneumoniae mouse model. Erkkilä L, Saario E, Laitinen K, Saikku P, Leinonen M. Vaccine; 2008 May 12; 26(20):2503-9. PubMed ID: 18433949 [Abstract] [Full Text] [Related]
55. Detection of amyloid beta aggregates in the brain of BALB/c mice after Chlamydia pneumoniae infection. Boelen E, Stassen FR, van der Ven AJ, Lemmens MA, Steinbusch HP, Bruggeman CA, Schmitz C, Steinbusch HW. Acta Neuropathol; 2007 Sep 12; 114(3):255-61. PubMed ID: 17581756 [Abstract] [Full Text] [Related]
56. New ways to identify novel bacterial antigens for vaccine development. Movahedi AR, Hampson DJ. Vet Microbiol; 2008 Sep 18; 131(1-2):1-13. PubMed ID: 18372122 [Abstract] [Full Text] [Related]
57. Vaccine potential of recombinant Ornithobacterium rhinotracheale antigens. Schuijffel DF, Van Empel PC, Segers RP, Van Putten JP, Nuijten PJ. Vaccine; 2006 Mar 10; 24(11):1858-67. PubMed ID: 16318896 [Abstract] [Full Text] [Related]
58. Genome Wide Analysis of Chlamydia pneumoniae for Candidate Vaccine Development. Sharma A, Soundhara Rajan G, Kharb R, Biswas S. Curr Comput Aided Drug Des; 2016 Mar 10; 12(3):206-215. PubMed ID: 27225643 [Abstract] [Full Text] [Related]