These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


362 related items for PubMed ID: 15630627

  • 41. Iron and protein biofortification of cassava: lessons learned.
    Leyva-Guerrero E, Narayanan NN, Ihemere U, Sayre RT.
    Curr Opin Biotechnol; 2012 Apr; 23(2):257-64. PubMed ID: 22226461
    [Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots.
    Balyejusa Kizito E, Rönnberg-Wästljung AC, Egwang T, Gullberg U, Fregene M, Westerbergh A.
    Hereditas; 2007 Sep; 144(4):129-36. PubMed ID: 17850597
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45. Chloroplast genetic engineering to improve agronomic traits.
    Daniell H, Ruiz ON, Dhingra A.
    Methods Mol Biol; 2005 Sep; 286():111-38. PubMed ID: 15310917
    [Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.
    Narayanan NN, Ihemere U, Ellery C, Sayre RT.
    PLoS One; 2011 Sep; 6(7):e21996. PubMed ID: 21799761
    [Abstract] [Full Text] [Related]

  • 48. Size asymmetry in intraspecific competition and the density-dependence of inbreeding depression in a natural plant population: a case study in cassava (Manihot esculenta Crantz, Euphorbiaceae).
    Pujol B, McKey D.
    J Evol Biol; 2006 Jan; 19(1):85-96. PubMed ID: 16405580
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54. Starch determination, amylose content and susceptibility to in vitro amylolysis in flours from the roots of 25 cassava varieties.
    Mejía-Agüero LE, Galeno F, Hernández-Hernández O, Matehus J, Tovar J.
    J Sci Food Agric; 2012 Feb; 92(3):673-8. PubMed ID: 21953312
    [Abstract] [Full Text] [Related]

  • 55. Cassava breeding: opportunities and challenges.
    Ceballos H, Iglesias CA, Pérez JC, Dixon AG.
    Plant Mol Biol; 2004 Nov; 56(4):503-16. PubMed ID: 15630615
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. Empowering biotechnology in southern Africa: establishment of a robust transformation platform for the production of transgenic industry-preferred cassava.
    Chetty CC, Rossin CB, Gruissem W, Vanderschuren H, Rey ME.
    N Biotechnol; 2013 Jan 25; 30(2):136-43. PubMed ID: 22683498
    [Abstract] [Full Text] [Related]

  • 58. Efficient transformation and regeneration of transgenic cassava using the neomycin phosphotransferase gene as aminoglycoside resistance marker gene.
    Niklaus M, Gruissem W, Vanderschuren H.
    GM Crops; 2011 Jan 25; 2(3):193-200. PubMed ID: 22179195
    [Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 19.