These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


193 related items for PubMed ID: 15640167

  • 1. Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation.
    Lazarevic V, Soldo B, Médico N, Pooley H, Bron S, Karamata D.
    Appl Environ Microbiol; 2005 Jan; 71(1):39-45. PubMed ID: 15640167
    [Abstract] [Full Text] [Related]

  • 2. A master regulator for biofilm formation by Bacillus subtilis.
    Kearns DB, Chu F, Branda SS, Kolter R, Losick R.
    Mol Microbiol; 2005 Feb; 55(3):739-49. PubMed ID: 15661000
    [Abstract] [Full Text] [Related]

  • 3. Identification of the Streptococcus gordonii glmM gene encoding phosphoglucosamine mutase and its role in bacterial cell morphology, biofilm formation, and sensitivity to antibiotics.
    Shimazu K, Takahashi Y, Uchikawa Y, Shimazu Y, Yajima A, Takashima E, Aoba T, Konishi K.
    FEMS Immunol Med Microbiol; 2008 Jul; 53(2):166-77. PubMed ID: 18462386
    [Abstract] [Full Text] [Related]

  • 4. Bacillus subtilis PgcA moonlights as a phosphoglucosamine mutase in support of peptidoglycan synthesis.
    Patel V, Black KA, Rhee KY, Helmann JD.
    PLoS Genet; 2019 Oct; 15(10):e1008434. PubMed ID: 31589605
    [Abstract] [Full Text] [Related]

  • 5. Division of labour during Bacillus subtilis biofilm formation.
    Kearns DB.
    Mol Microbiol; 2008 Jan; 67(2):229-31. PubMed ID: 18086186
    [Abstract] [Full Text] [Related]

  • 6. Purification and enzymatic characterization of PgcM: a beta-phosphoglucomutase and glucose-1-phosphate phosphodismutase of Bacillus subtilis.
    Mesak LR, Dahl MK.
    Arch Microbiol; 2000 Oct; 174(4):256-64. PubMed ID: 11081794
    [Abstract] [Full Text] [Related]

  • 7. Biofilm-defective mutants of Bacillus subtilis.
    Chagneau C, Saier MH.
    J Mol Microbiol Biotechnol; 2004 Oct; 8(3):177-88. PubMed ID: 16088219
    [Abstract] [Full Text] [Related]

  • 8. A molecular clutch disables flagella in the Bacillus subtilis biofilm.
    Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB.
    Science; 2008 Jun 20; 320(5883):1636-8. PubMed ID: 18566286
    [Abstract] [Full Text] [Related]

  • 9. Targets of the master regulator of biofilm formation in Bacillus subtilis.
    Chu F, Kearns DB, Branda SS, Kolter R, Losick R.
    Mol Microbiol; 2006 Feb 20; 59(4):1216-28. PubMed ID: 16430695
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDPglucose pyrophosphorylase.
    Pooley HM, Paschoud D, Karamata D.
    J Gen Microbiol; 1987 Dec 20; 133(12):3481-93. PubMed ID: 2846750
    [Abstract] [Full Text] [Related]

  • 12. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes.
    Kobayashi K.
    J Bacteriol; 2007 Jul 20; 189(13):4920-31. PubMed ID: 17468240
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Identification and characterization of clinically isolated biofilm-forming gram-positive rods from teeth associated with persistent apical periodontitis.
    Yamane K, Ogawa K, Yoshida M, Hayashi H, Nakamura T, Yamanaka T, Tamaki T, Hojoh H, Leung KP, Fukushima H.
    J Endod; 2009 Mar 20; 35(3):347-52. PubMed ID: 19249593
    [Abstract] [Full Text] [Related]

  • 15. Effects of degU32(Hy), degQa and degR pleiotropic regulatory genes on the growth and protease fermentation of Bacillus subtilis Ki-2-132.
    Pan XF.
    Yi Chuan Xue Bao; 2006 Apr 20; 33(4):373-80. PubMed ID: 16625836
    [Abstract] [Full Text] [Related]

  • 16. Expression of the promoter for the maltogenic amylase gene in Bacillus subtilis 168.
    Kim DY, Cha CH, Oh WS, Yoon YJ, Kim JW.
    J Microbiol; 2004 Dec 20; 42(4):319-27. PubMed ID: 15650689
    [Abstract] [Full Text] [Related]

  • 17. Genes involved in formation of structured multicellular communities by Bacillus subtilis.
    Branda SS, González-Pastor JE, Dervyn E, Ehrlich SD, Losick R, Kolter R.
    J Bacteriol; 2004 Jun 20; 186(12):3970-9. PubMed ID: 15175311
    [Abstract] [Full Text] [Related]

  • 18. The riboflavin kinase encoding gene ribR of Bacillus subtilis is a part of a 10 kb operon, which is negatively regulated by the yrzC gene product.
    Solovieva IM, Kreneva RA, Errais Lopes L, Perumov DA.
    FEMS Microbiol Lett; 2005 Feb 01; 243(1):51-8. PubMed ID: 15668000
    [Abstract] [Full Text] [Related]

  • 19. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes.
    Lulko AT, Buist G, Kok J, Kuipers OP.
    J Mol Microbiol Biotechnol; 2007 Feb 01; 12(1-2):82-95. PubMed ID: 17183215
    [Abstract] [Full Text] [Related]

  • 20. SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis.
    Leiman SA, Arboleda LC, Spina JS, McLoon AL.
    BMC Microbiol; 2014 Nov 30; 14():301. PubMed ID: 25433524
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.