These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 15640441

  • 1. Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions.
    Sato K, Hosokawa K, Maeda M.
    Nucleic Acids Res; 2005 Jan 07; 33(1):e4. PubMed ID: 15640441
    [Abstract] [Full Text] [Related]

  • 2. A colorimetric method for point mutation detection using high-fidelity DNA ligase.
    Li J, Chu X, Liu Y, Jiang JH, He Z, Zhang Z, Shen G, Yu RQ.
    Nucleic Acids Res; 2005 Oct 27; 33(19):e168. PubMed ID: 16257979
    [Abstract] [Full Text] [Related]

  • 3. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization.
    Sato K, Hosokawa K, Maeda M.
    J Am Chem Soc; 2003 Jul 09; 125(27):8102-3. PubMed ID: 12837070
    [Abstract] [Full Text] [Related]

  • 4. Non-cross-linking gold nanoparticle aggregation for sensitive detection of single-nucleotide polymorphisms: optimization of the particle diameter.
    Sato K, Onoguchi M, Sato Y, Hosokawa K, Maeda M.
    Anal Biochem; 2006 Mar 01; 350(1):162-4. PubMed ID: 16442491
    [No Abstract] [Full Text] [Related]

  • 5. Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles.
    Kerman K, Saito M, Morita Y, Takamura Y, Ozsoz M, Tamiya E.
    Anal Chem; 2004 Apr 01; 76(7):1877-84. PubMed ID: 15053647
    [Abstract] [Full Text] [Related]

  • 6. Colorimetric genotyping of single nucleotide polymorphism based on selective aggregation of unmodified gold nanoparticles.
    Lee H, Joo SW, Lee SY, Lee CH, Yoon KA, Lee K.
    Biosens Bioelectron; 2010 Oct 15; 26(2):730-5. PubMed ID: 20674325
    [Abstract] [Full Text] [Related]

  • 7. Genotyping of single-nucleotide polymorphisms by primer extension reaction in a dry-reagent dipstick format.
    Litos IK, Ioannou PC, Christopoulos TK, Traeger-Synodinos J, Kanavakis E.
    Anal Chem; 2007 Jan 15; 79(2):395-402. PubMed ID: 17222001
    [Abstract] [Full Text] [Related]

  • 8. Surface plasmon resonance imaging on a microchip for detection of DNA-modified gold nanoparticles deposited onto the surface in a non-cross-linking configuration.
    Sato Y, Sato K, Hosokawa K, Maeda M.
    Anal Biochem; 2006 Aug 01; 355(1):125-31. PubMed ID: 16753128
    [Abstract] [Full Text] [Related]

  • 9. Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles.
    Wu ZS, Jiang JH, Fu L, Shen GL, Yu RQ.
    Anal Biochem; 2006 Jun 01; 353(1):22-9. PubMed ID: 16626619
    [Abstract] [Full Text] [Related]

  • 10. Simple and rapid colorimetric detection of cofactors of aptazymes using noncrosslinking gold nanoparticle aggregation.
    Ogawa A, Maeda M.
    Bioorg Med Chem Lett; 2008 Dec 15; 18(24):6517-20. PubMed ID: 18952416
    [Abstract] [Full Text] [Related]

  • 11. Detection of single-base mismatch at distal end of DNA duplex by electrochemical impedance spectroscopy.
    Ito T, Hosokawa K, Maeda M.
    Biosens Bioelectron; 2007 Mar 15; 22(8):1816-9. PubMed ID: 16979330
    [Abstract] [Full Text] [Related]

  • 12. Gold nanoparticle-based colorimetric assay of single-nucleotide polymorphism of triplex DNA.
    Zhu X, Liu Y, Yang J, Liang Z, Li G.
    Biosens Bioelectron; 2010 May 15; 25(9):2135-9. PubMed ID: 20233656
    [Abstract] [Full Text] [Related]

  • 13. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.
    Chen YT, Hsu CL, Hou SY.
    Anal Biochem; 2008 Apr 15; 375(2):299-305. PubMed ID: 18211817
    [Abstract] [Full Text] [Related]

  • 14. Label-free optical detection of single-base mismatches by the combination of nuclease and gold nanoparticles.
    Liu M, Yuan M, Lou X, Mao H, Zheng D, Zou R, Zou N, Tang X, Zhao J.
    Biosens Bioelectron; 2011 Jul 15; 26(11):4294-300. PubMed ID: 21605966
    [Abstract] [Full Text] [Related]

  • 15. 2D aggregation and selective desorption of nanoparticle probes: a new method to probe DNA mismatches and damages.
    Charrier A, Candoni N, Liachenko N, Thibaudau F.
    Biosens Bioelectron; 2007 Apr 15; 22(9-10):1881-6. PubMed ID: 16959484
    [Abstract] [Full Text] [Related]

  • 16. Study of single-stranded DNA binding protein-nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms.
    Tan YN, Lee KH, Su X.
    Anal Chem; 2011 Jun 01; 83(11):4251-7. PubMed ID: 21524056
    [Abstract] [Full Text] [Related]

  • 17. Gold nanoparticle probes for the detection of nucleic acid targets.
    Thaxton CS, Georganopoulou DG, Mirkin CA.
    Clin Chim Acta; 2006 Jan 01; 363(1-2):120-6. PubMed ID: 16214124
    [Abstract] [Full Text] [Related]

  • 18. Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip.
    Sato Y, Hosokawa K, Maeda M.
    Colloids Surf B Biointerfaces; 2008 Mar 15; 62(1):71-6. PubMed ID: 17976962
    [Abstract] [Full Text] [Related]

  • 19. Aggregation effects of gold nanoparticles for single-base mismatch detection in influenza A (H1N1) DNA sequences using fluorescence and Raman measurements.
    Ganbold EO, Kang T, Lee K, Lee SY, Joo SW.
    Colloids Surf B Biointerfaces; 2012 May 01; 93():148-53. PubMed ID: 22261178
    [Abstract] [Full Text] [Related]

  • 20. Colorimetric detection of DNA by modulation of thrombin activity on gold nanoparticles.
    Jian JW, Huang CC.
    Chemistry; 2011 Feb 18; 17(8):2374-80. PubMed ID: 21287648
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.