These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 15647516
1. Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation. Chinen A, Matsumoto Y, Kawamura S. Mol Biol Evol; 2005 Apr; 22(4):1001-10. PubMed ID: 15647516 [Abstract] [Full Text] [Related]
2. Effects of exogenous thyroid hormones on visual pigment composition in coho salmon (Oncorhynchus kisutch). Temple SE, Ramsden SD, Haimberger TJ, Veldhoen KM, Veldhoen NJ, Carter NL, Roth WM, Hawryshyn CW. J Exp Biol; 2008 Jul; 211(Pt 13):2134-43. PubMed ID: 18552303 [Abstract] [Full Text] [Related]
3. Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). Matsumoto Y, Fukamachi S, Mitani H, Kawamura S. Gene; 2006 Apr 26; 371(2):268-78. PubMed ID: 16460888 [Abstract] [Full Text] [Related]
4. Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment. Takahashi Y, Ebrey TG. Biochemistry; 2003 May 27; 42(20):6025-34. PubMed ID: 12755604 [Abstract] [Full Text] [Related]
6. Spectral tuning of shortwave-sensitive visual pigments in vertebrates. Hunt DM, Carvalho LS, Cowing JA, Parry JW, Wilkie SE, Davies WL, Bowmaker JK. Photochem Photobiol; 2007 May 27; 83(2):303-10. PubMed ID: 17576346 [Abstract] [Full Text] [Related]
7. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution. Deeb SS, Wakefield MJ, Tada T, Marotte L, Yokoyama S, Marshall Graves JA. Mol Biol Evol; 2003 Oct 27; 20(10):1642-9. PubMed ID: 12885969 [Abstract] [Full Text] [Related]
8. Visual pigment composition in zebrafish: Evidence for a rhodopsin-porphyropsin interchange system. Allison WT, Haimberger TJ, Hawryshyn CW, Temple SE. Vis Neurosci; 2004 Oct 27; 21(6):945-52. PubMed ID: 15733349 [Abstract] [Full Text] [Related]
9. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. Chang BS, Crandall KA, Carulli JP, Hartl DL. Mol Phylogenet Evol; 1995 Mar 27; 4(1):31-43. PubMed ID: 7620634 [Abstract] [Full Text] [Related]
11. Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies. Frentiu FD, Bernard GD, Sison-Mangus MP, Brower AV, Briscoe AD. Mol Biol Evol; 2007 Sep 27; 24(9):2016-28. PubMed ID: 17609538 [Abstract] [Full Text] [Related]
12. On the relation between the photoactivation energy and the absorbance spectrum of visual pigments. Ala-Laurila P, Pahlberg J, Koskelainen A, Donner K. Vision Res; 2004 Sep 27; 44(18):2153-8. PubMed ID: 15183682 [Abstract] [Full Text] [Related]
14. Mutagenesis and reconstitution of middle-to-long-wave-sensitive visual pigments of New World monkeys for testing the tuning effect of residues at sites 229 and 233. Hiramatsu C, Radlwimmer FB, Yokoyama S, Kawamura S. Vision Res; 2004 Sep 27; 44(19):2225-31. PubMed ID: 15208009 [Abstract] [Full Text] [Related]
18. Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: can wavelength sensitivity be inferred from sequence data? Hauser FE, van Hazel I, Chang BS. J Exp Zool B Mol Dev Evol; 2014 Nov 27; 322(7):529-39. PubMed ID: 24890094 [Abstract] [Full Text] [Related]
20. Spectral differentiation of blue opsins between phylogenetically close but ecologically distant goldfish and zebrafish. Chinen A, Matsumoto Y, Kawamura S. J Biol Chem; 2005 Mar 11; 280(10):9460-6. PubMed ID: 15623516 [Abstract] [Full Text] [Related] Page: [Next] [New Search]