These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 15654866

  • 1. A unified model of presynaptic release site gating by calcium channel domains.
    Gentile L, Stanley EF.
    Eur J Neurosci; 2005 Jan; 21(1):278-82. PubMed ID: 15654866
    [Abstract] [Full Text] [Related]

  • 2. Presynaptic calcium channels and the depletion of synaptic cleft calcium ions.
    Stanley EF.
    J Neurophysiol; 2000 Jan; 83(1):477-82. PubMed ID: 10634889
    [Abstract] [Full Text] [Related]

  • 3. Can presynaptic depolarization release transmitter without calcium influx?
    Zucker RS, Landò L, Fogelson A.
    J Physiol (Paris); 1986 Jan; 81(4):237-45. PubMed ID: 2883310
    [Abstract] [Full Text] [Related]

  • 4. N type Ca2+ channels and RIM scaffold protein covary at the presynaptic transmitter release face but are components of independent protein complexes.
    Khanna R, Li Q, Sun L, Collins TJ, Stanley EF.
    Neuroscience; 2006 Jul 21; 140(4):1201-8. PubMed ID: 16757118
    [Abstract] [Full Text] [Related]

  • 5. Repolarization of the presynaptic action potential and short-term synaptic plasticity in the chick ciliary ganglion.
    Poage RE, Zengel JE.
    Synapse; 2002 Dec 01; 46(3):189-98. PubMed ID: 12325045
    [Abstract] [Full Text] [Related]

  • 6. Single-channel properties of BK-type calcium-activated potassium channels at a cholinergic presynaptic nerve terminal.
    Sun XP, Schlichter LC, Stanley EF.
    J Physiol; 1999 Aug 01; 518 ( Pt 3)(Pt 3):639-51. PubMed ID: 10420003
    [Abstract] [Full Text] [Related]

  • 7. Transmitter release face Ca2+ channel clusters persist at isolated presynaptic terminals.
    Sun L, Li Q, Khanna R, Chan AW, Wong F, Stanley EF.
    Eur J Neurosci; 2006 Mar 01; 23(5):1391-6. PubMed ID: 16553800
    [Abstract] [Full Text] [Related]

  • 8. Modulation of transmitter release by presynaptic resting potential and background calcium levels.
    Awatramani GB, Price GD, Trussell LO.
    Neuron; 2005 Oct 06; 48(1):109-21. PubMed ID: 16202712
    [Abstract] [Full Text] [Related]

  • 9. Membrane potential has no direct role in evoking neurotransmitter release.
    Zucker RS, Haydon PG.
    Nature; 1988 Sep 22; 335(6188):360-2. PubMed ID: 2901669
    [Abstract] [Full Text] [Related]

  • 10. The Drosophila cacts2 mutation reduces presynaptic Ca2+ entry and defines an important element in Cav2.1 channel inactivation.
    Macleod GT, Chen L, Karunanithi S, Peloquin JB, Atwood HL, McRory JE, Zamponi GW, Charlton MP.
    Eur J Neurosci; 2006 Jun 22; 23(12):3230-44. PubMed ID: 16820014
    [Abstract] [Full Text] [Related]

  • 11. Neurosteroid pregnenolone sulfate enhances glutamatergic synaptic transmission by facilitating presynaptic calcium currents at the calyx of Held of immature rats.
    Hige T, Fujiyoshi Y, Takahashi T.
    Eur J Neurosci; 2006 Oct 22; 24(7):1955-66. PubMed ID: 17040476
    [Abstract] [Full Text] [Related]

  • 12. Calcium influx and transmitter release in a fast CNS synapse.
    Borst JG, Sakmann B.
    Nature; 1996 Oct 03; 383(6599):431-4. PubMed ID: 8837774
    [Abstract] [Full Text] [Related]

  • 13. Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem.
    Borst JG, Sakmann B.
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb 28; 354(1381):347-55. PubMed ID: 10212483
    [Abstract] [Full Text] [Related]

  • 14. Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels.
    Stanley EF, Mirotznik RR.
    Nature; 1997 Jan 23; 385(6614):340-3. PubMed ID: 9002518
    [Abstract] [Full Text] [Related]

  • 15. Resistance of presynaptic CaV2.2 channels to voltage-dependent inactivation: dynamic palmitoylation and voltage sensitivity.
    Chan AW, Owens S, Tung C, Stanley EF.
    Cell Calcium; 2007 Jan 23; 42(4-5):419-25. PubMed ID: 17602741
    [Abstract] [Full Text] [Related]

  • 16. The presynaptic CaV2.2 channel-transmitter release site core complex.
    Khanna R, Li Q, Bewersdorf J, Stanley EF.
    Eur J Neurosci; 2007 Aug 23; 26(3):547-59. PubMed ID: 17686036
    [Abstract] [Full Text] [Related]

  • 17. Selective inhibition of spontaneous but not Ca2+ -dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices.
    Glitsch M.
    J Neurophysiol; 2006 Jul 23; 96(1):86-96. PubMed ID: 16611839
    [Abstract] [Full Text] [Related]

  • 18. The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release.
    Wadel K, Neher E, Sakaba T.
    Neuron; 2007 Feb 15; 53(4):563-75. PubMed ID: 17296557
    [Abstract] [Full Text] [Related]

  • 19. Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels.
    Jarvis SE, Zamponi GW.
    Cell Calcium; 2005 May 15; 37(5):483-8. PubMed ID: 15820397
    [Abstract] [Full Text] [Related]

  • 20. Multitude of ion channels in the regulation of transmitter release.
    Rahamimoff R, Butkevich A, Duridanova D, Ahdut R, Harari E, Kachalsky SG.
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb 28; 354(1381):281-8. PubMed ID: 10212476
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.