These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
328 related items for PubMed ID: 15657936
1. Flow perfusion culture induces the osteoblastic differentiation of marrow stroma cell-scaffold constructs in the absence of dexamethasone. Holtorf HL, Jansen JA, Mikos AG. J Biomed Mater Res A; 2005 Mar 01; 72(3):326-34. PubMed ID: 15657936 [Abstract] [Full Text] [Related]
5. Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh. van den Dolder J, Bancroft GN, Sikavitsas VI, Spauwen PH, Jansen JA, Mikos AG. J Biomed Mater Res A; 2003 Feb 01; 64(2):235-41. PubMed ID: 12522809 [Abstract] [Full Text] [Related]
6. Combination of enzymes and flow perfusion conditions improves osteogenic differentiation of bone marrow stromal cells cultured upon starch/poly(epsilon-caprolactone) fiber meshes. Martins AM, Saraf A, Sousa RA, Alves CM, Mikos AG, Kasper FK, Reis RL. J Biomed Mater Res A; 2010 Sep 15; 94(4):1061-9. PubMed ID: 20694973 [Abstract] [Full Text] [Related]
7. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. Gomes ME, Sikavitsas VI, Behravesh E, Reis RL, Mikos AG. J Biomed Mater Res A; 2003 Oct 01; 67(1):87-95. PubMed ID: 14517865 [Abstract] [Full Text] [Related]
8. Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides. Shin H, Zygourakis K, Farach-Carson MC, Yaszemski MJ, Mikos AG. J Biomed Mater Res A; 2004 Jun 01; 69(3):535-43. PubMed ID: 15127400 [Abstract] [Full Text] [Related]
9. In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. Temenoff JS, Park H, Jabbari E, Sheffield TL, LeBaron RG, Ambrose CG, Mikos AG. J Biomed Mater Res A; 2004 Aug 01; 70(2):235-44. PubMed ID: 15227668 [Abstract] [Full Text] [Related]
17. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. Sikavitsas VI, Bancroft GN, Mikos AG. J Biomed Mater Res; 2002 Oct 01; 62(1):136-48. PubMed ID: 12124795 [Abstract] [Full Text] [Related]
18. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold. Valarmathi MT, Yost MJ, Goodwin RL, Potts JD. Biomaterials; 2008 May 01; 29(14):2203-16. PubMed ID: 18289664 [Abstract] [Full Text] [Related]
19. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Mauney JR, Sjostorm S, Blumberg J, Horan R, O'Leary JP, Vunjak-Novakovic G, Volloch V, Kaplan DL. Calcif Tissue Int; 2004 May 01; 74(5):458-68. PubMed ID: 14961210 [Abstract] [Full Text] [Related]
20. Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. Gomes ME, Holtorf HL, Reis RL, Mikos AG. Tissue Eng; 2006 Apr 01; 12(4):801-9. PubMed ID: 16674293 [Abstract] [Full Text] [Related] Page: [Next] [New Search]