These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
311 related items for PubMed ID: 15659157
1. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A, Lory S. Mol Microbiol; 2005 Jan; 55(2):368-80. PubMed ID: 15659157 [Abstract] [Full Text] [Related]
2. Assembly of fimbrial structures in Pseudomonas aeruginosa: functionality and specificity of chaperone-usher machineries. Ruer S, Stender S, Filloux A, de Bentzmann S. J Bacteriol; 2007 May; 189(9):3547-55. PubMed ID: 17293418 [Abstract] [Full Text] [Related]
3. Pseudomonas aeruginosa PA14 cupD transcription is activated by the RcsB response regulator, but repressed by its putative cognate sensor RcsC. Nicastro GG, Boechat AL, Abe CM, Kaihami GH, Baldini RL. FEMS Microbiol Lett; 2009 Nov; 301(1):115-23. PubMed ID: 19832907 [Abstract] [Full Text] [Related]
4. An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system. Ha UH, Kim J, Badrane H, Jia J, Baker HV, Wu D, Jin S. Mol Microbiol; 2004 Oct; 54(2):307-20. PubMed ID: 15469505 [Abstract] [Full Text] [Related]
5. Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. Vallet I, Diggle SP, Stacey RE, Cámara M, Ventre I, Lory S, Lazdunski A, Williams P, Filloux A. J Bacteriol; 2004 May; 186(9):2880-90. PubMed ID: 15090530 [Abstract] [Full Text] [Related]
6. The two-component response regulator PprB modulates quorum-sensing signal production and global gene expression in Pseudomonas aeruginosa. Dong YH, Zhang XF, Soo HM, Greenberg EP, Zhang LH. Mol Microbiol; 2005 Jun; 56(5):1287-301. PubMed ID: 15882421 [Abstract] [Full Text] [Related]
7. The pvc operon regulates the expression of the Pseudomonas aeruginosa fimbrial chaperone/usher pathway (cup) genes. Qaisar U, Luo L, Haley CL, Brady SF, Carty NL, Colmer-Hamood JA, Hamood AN. PLoS One; 2013 Jun; 8(4):e62735. PubMed ID: 23646138 [Abstract] [Full Text] [Related]
8. Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators. Mikkelsen H, Ball G, Giraud C, Filloux A. PLoS One; 2009 Jun 23; 4(6):e6018. PubMed ID: 19547710 [Abstract] [Full Text] [Related]
9. Pseudomonas aeruginosa attachment and biofilm development in dynamic environments. Ramsey MM, Whiteley M. Mol Microbiol; 2004 Aug 23; 53(4):1075-87. PubMed ID: 15306012 [Abstract] [Full Text] [Related]
10. Repression of phase-variable cup gene expression by H-NS-like proteins in Pseudomonas aeruginosa. Vallet-Gely I, Donovan KE, Fang R, Joung JK, Dove SL. Proc Natl Acad Sci U S A; 2005 Aug 02; 102(31):11082-7. PubMed ID: 16043713 [Abstract] [Full Text] [Related]
11. Identification of an HptB-mediated multi-step phosphorelay in Pseudomonas aeruginosa PAO1. Lin CT, Huang YJ, Chu PH, Hsu JL, Huang CH, Peng HL. Res Microbiol; 2006 Mar 02; 157(2):169-75. PubMed ID: 16182517 [Abstract] [Full Text] [Related]
12. MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Xiao G, Déziel E, He J, Lépine F, Lesic B, Castonguay MH, Milot S, Tampakaki AP, Stachel SE, Rahme LG. Mol Microbiol; 2006 Dec 02; 62(6):1689-99. PubMed ID: 17083468 [Abstract] [Full Text] [Related]
13. Genetic screening of Hrp type III-related pathogenicity genes controlled by the HrpB transcriptional activator in Ralstonia solanacearum. Mukaihara T, Tamura N, Murata Y, Iwabuchi M. Mol Microbiol; 2004 Nov 02; 54(4):863-75. PubMed ID: 15522073 [Abstract] [Full Text] [Related]
14. Two-component regulatory systems in Pseudomonas aeruginosa: an intricate network mediating fimbrial and efflux pump gene expression. Sivaneson M, Mikkelsen H, Ventre I, Bordi C, Filloux A. Mol Microbiol; 2011 Mar 02; 79(5):1353-66. PubMed ID: 21205015 [Abstract] [Full Text] [Related]
15. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Hobbs M, Collie ES, Free PD, Livingston SP, Mattick JS. Mol Microbiol; 1993 Mar 02; 7(5):669-82. PubMed ID: 8097014 [Abstract] [Full Text] [Related]
16. Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. Duan K, Surette MG. J Bacteriol; 2007 Jul 02; 189(13):4827-36. PubMed ID: 17449617 [Abstract] [Full Text] [Related]
17. Identification of a new gene PA5017 involved in flagella-mediated motility, chemotaxis and biofilm formation in Pseudomonas aeruginosa. Li Y, Xia H, Bai F, Xu H, Yang L, Yao H, Zhang L, Zhang X, Bai Y, Saris PE, Tolker-Nielsen T, Qiao M. FEMS Microbiol Lett; 2007 Jul 02; 272(2):188-95. PubMed ID: 17521365 [Abstract] [Full Text] [Related]
18. The GacS-GacA two-component regulatory system of Pseudomonas fluorescens: a bacterial two-hybrid analysis. Workentine ML, Chang L, Ceri H, Turner RJ. FEMS Microbiol Lett; 2009 Mar 02; 292(1):50-6. PubMed ID: 19191877 [Abstract] [Full Text] [Related]
19. Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. Lizewski SE, Schurr JR, Jackson DW, Frisk A, Carterson AJ, Schurr MJ. J Bacteriol; 2004 Sep 02; 186(17):5672-84. PubMed ID: 15317771 [Abstract] [Full Text] [Related]
20. Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance. Choi YS, Shin DH, Chung IY, Kim SH, Heo YJ, Cho YH. J Microbiol Biotechnol; 2007 Aug 02; 17(8):1344-52. PubMed ID: 18051604 [Abstract] [Full Text] [Related] Page: [Next] [New Search]