These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 15659184

  • 1. Analysis of the expression of some stress induced genes in several commercial wine yeast strains at the beginning of vinification.
    Zuzuarregui A, Carrasco P, Palacios A, Julien A, del Olmo M.
    J Appl Microbiol; 2005; 98(2):299-307. PubMed ID: 15659184
    [Abstract] [Full Text] [Related]

  • 2. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [Abstract] [Full Text] [Related]

  • 3. Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation.
    Pigeau GM, Inglis DL.
    J Appl Microbiol; 2007 Nov; 103(5):1576-86. PubMed ID: 17953569
    [Abstract] [Full Text] [Related]

  • 4. Expression of stress response genes in wine strains with different fermentative behavior.
    Zuzuarregui A, del Olmo ML.
    FEMS Yeast Res; 2004 May; 4(7):699-710. PubMed ID: 15093773
    [Abstract] [Full Text] [Related]

  • 5. Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions.
    Jiménez-Martí E, Zuzuarregui A, Ridaura I, Lozano N, del Olmo M.
    Int J Food Microbiol; 2009 Mar 31; 130(2):122-30. PubMed ID: 19217680
    [Abstract] [Full Text] [Related]

  • 6. A novel approach for the improvement of stress resistance in wine yeasts.
    Cardona F, Carrasco P, Pérez-Ortín JE, del Olmo Ml, Aranda A.
    Int J Food Microbiol; 2007 Feb 28; 114(1):83-91. PubMed ID: 17187885
    [Abstract] [Full Text] [Related]

  • 7. Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection.
    Zuzuarregui A, del Olmo M.
    Antonie Van Leeuwenhoek; 2004 May 28; 85(4):271-80. PubMed ID: 15028866
    [Abstract] [Full Text] [Related]

  • 8. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C, Cárdenas J, Melo F, Agosin E.
    Yeast; 2005 Apr 15; 22(5):369-83. PubMed ID: 15806604
    [Abstract] [Full Text] [Related]

  • 9. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T, Nakakura Y, Yoshikawa K, Ashitani K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.
    Appl Microbiol Biotechnol; 2006 Apr 15; 70(3):346-57. PubMed ID: 16283296
    [Abstract] [Full Text] [Related]

  • 10. The vinification of partially dried grapes: a comparative fermentation study of Saccharomyces cerevisiae strains under high sugar stress.
    Malacrinò P, Tosi E, Caramia G, Prisco R, Zapparoli G.
    Lett Appl Microbiol; 2005 Apr 15; 40(6):466-72. PubMed ID: 15892744
    [Abstract] [Full Text] [Related]

  • 11. Proteomic evolution of a wine yeast during the first hours of fermentation.
    Salvadó Z, Chiva R, Rodríguez-Vargas S, Rández-Gil F, Mas A, Guillamón JM.
    FEMS Yeast Res; 2008 Nov 15; 8(7):1137-46. PubMed ID: 18503542
    [Abstract] [Full Text] [Related]

  • 12. FLO gene-dependent phenotypes in industrial wine yeast strains.
    Govender P, Bester M, Bauer FF.
    Appl Microbiol Biotechnol; 2010 Apr 15; 86(3):931-45. PubMed ID: 20013339
    [Abstract] [Full Text] [Related]

  • 13. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway.
    Aranda A, del Olmo Ml Ml.
    Yeast; 2003 Jun 15; 20(8):747-59. PubMed ID: 12794936
    [Abstract] [Full Text] [Related]

  • 14. Correlation between cell lipid content, gene expression and fermentative behaviour of two Saccharomyces cerevisiae wine strains.
    Zara G, Bardi L, Belviso S, Farris GA, Zara S, Budroni M.
    J Appl Microbiol; 2008 Mar 15; 104(3):906-14. PubMed ID: 17961155
    [Abstract] [Full Text] [Related]

  • 15. Towards an understanding of the adaptation of wine yeasts to must: relevance of the osmotic stress response.
    Jiménez-Martí E, Gomar-Alba M, Palacios A, Ortiz-Julien A, del Olmo ML.
    Appl Microbiol Biotechnol; 2011 Mar 15; 89(5):1551-61. PubMed ID: 20941492
    [Abstract] [Full Text] [Related]

  • 16. The heterologous expression of polysaccharidase-encoding genes with oenological relevance in Saccharomyces cerevisiae.
    van Rensburg P, Strauss ML, Lambrechts MG, Cordero Otero RR, Pretorius IS.
    J Appl Microbiol; 2007 Dec 15; 103(6):2248-57. PubMed ID: 18045408
    [Abstract] [Full Text] [Related]

  • 17. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation.
    Riou C, Nicaud JM, Barre P, Gaillardin C.
    Yeast; 1997 Aug 15; 13(10):903-15. PubMed ID: 9271106
    [Abstract] [Full Text] [Related]

  • 18. Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts.
    Garre E, Raginel F, Palacios A, Julien A, Matallana E.
    Int J Food Microbiol; 2010 Jan 01; 136(3):295-303. PubMed ID: 19914726
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.