These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics. Faraji F, Golmohammadzadeh R, Rashchi F, Alimardani N. J Environ Manage; 2018 Jul 01; 217():775-787. PubMed ID: 29660703 [Abstract] [Full Text] [Related]
23. Two stage leaching of activated spent HDS catalyst and solvent extraction of aluminium using organo-phosphinic extractant, Cyanex 272. Park KH, Mohapatra D, Nam CW. J Hazard Mater; 2007 Sep 05; 148(1-2):287-95. PubMed ID: 17363155 [Abstract] [Full Text] [Related]
24. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes. Del Mundo Dacera D, Babel S. Bioresour Technol; 2008 Apr 05; 99(6):1682-9. PubMed ID: 17512728 [Abstract] [Full Text] [Related]
25. Stabilization of heavy metals on spent fluid catalytic cracking catalyst using marine clay. Sun DD, Tay JH, Qian CE, Lai D. Water Sci Technol; 2001 Apr 05; 44(10):285-91. PubMed ID: 11794668 [Abstract] [Full Text] [Related]
27. Bioleaching of metals from spent fluid catalytic cracking catalyst using adapted Acidithiobacillus caldus. Wang YJ, Li LL, Zhao S, Chen Y, Yu AF. Environ Sci Pollut Res Int; 2023 Dec 05; 30(60):125689-125701. PubMed ID: 38001294 [Abstract] [Full Text] [Related]
28. Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species. Kim MJ, Seo JY, Choi YS, Kim GH. Waste Manag; 2016 May 05; 51():168-173. PubMed ID: 26584557 [Abstract] [Full Text] [Related]
31. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt. Amin MM, Elaassy IE, El-Feky MG, Sallam AS, Talaat MS, Kawady NA. J Environ Radioact; 2014 Aug 05; 134():76-82. PubMed ID: 24682031 [Abstract] [Full Text] [Related]
32. Dissolution kinetics of spent petroleum catalyst using sulfur oxidizing acidophilic microorganisms. Mishra D, Ahn JG, Kim DJ, Roychaudhury G, Ralph DE. J Hazard Mater; 2009 Aug 15; 167(1-3):1231-6. PubMed ID: 19286311 [Abstract] [Full Text] [Related]
34. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. Mishra D, Kim DJ, Ralph DE, Ahn JG, Rhee YH. J Hazard Mater; 2008 Apr 15; 152(3):1082-91. PubMed ID: 17825485 [Abstract] [Full Text] [Related]
35. Recycling of polymer waste with fluid catalytic cracking catalysts. Ali S, Garforth A, Fakhru'l-Razi A. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006 Apr 15; 41(6):1145-54. PubMed ID: 16760091 [Abstract] [Full Text] [Related]
36. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Mishra D, Kim DJ, Ralph DE, Ahn JG, Rhee YH. Waste Manag; 2008 Apr 15; 28(2):333-8. PubMed ID: 17376665 [Abstract] [Full Text] [Related]
37. Bioleaching of rare earth elements from monazite sand. Brisson VL, Zhuang WQ, Alvarez-Cohen L. Biotechnol Bioeng; 2016 Feb 15; 113(2):339-48. PubMed ID: 26332985 [Abstract] [Full Text] [Related]
38. Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger. Ikeda Y, Park EY, Okuda N. Bioresour Technol; 2006 May 15; 97(8):1030-5. PubMed ID: 15979872 [Abstract] [Full Text] [Related]
39. Microbial leaching of waste solder for recovery of metal. Hocheng H, Hong T, Jadhav U. Appl Biochem Biotechnol; 2014 May 15; 173(1):193-204. PubMed ID: 24634142 [Abstract] [Full Text] [Related]
40. A novel green strategy for biorecovery of valuable elements along with enrichment of rare earth elements from activated spent automotive catalysts using fungal metabolites. Bahaloo-Horeh N, Mousavi SM. J Hazard Mater; 2022 May 15; 430():128509. PubMed ID: 35739687 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]