These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
241 related items for PubMed ID: 15664429
1. Carbofuran-induced oxidative stress in slow and fast skeletal muscles: prevention by memantine and atropine. Milatovic D, Gupta RC, Dekundy A, Montine TJ, Dettbarn WD. Toxicology; 2005 Mar 01; 208(1):13-24. PubMed ID: 15664429 [Abstract] [Full Text] [Related]
2. Neuronal oxidative injury and dendritic damage induced by carbofuran: protection by memantine. Gupta RC, Milatovic S, Dettbarn WD, Aschner M, Milatovic D. Toxicol Appl Pharmacol; 2007 Mar 01; 219(2-3):97-105. PubMed ID: 17188316 [Abstract] [Full Text] [Related]
3. Involvement of nitric oxide in myotoxicity produced by diisopropylphosphorofluoridate (DFP)-induced muscle hyperactivity. Gupta RC, Milatovic D, Dettbarn WD. Arch Toxicol; 2002 Dec 01; 76(12):715-26. PubMed ID: 12451448 [Abstract] [Full Text] [Related]
4. Cholinergic and noncholinergic changes in skeletal muscles by carbofuran and methyl parathion. Gupta RC, Goad JT, Kadel WL. J Toxicol Environ Health; 1994 Nov 01; 43(3):291-304. PubMed ID: 7966439 [Abstract] [Full Text] [Related]
5. Prevention and antagonism of acute carbofuran intoxication by memantine and atropine. Gupta RC, Kadel WL. J Toxicol Environ Health; 1989 Nov 01; 28(1):111-22. PubMed ID: 2778846 [Abstract] [Full Text] [Related]
6. Role of high-energy phosphates and their metabolites in protection of carbofuran-induced biochemical changes in diaphragm muscle by memantine. Gupta RC, Goad JT. Arch Toxicol; 2000 Mar 01; 74(1):13-20. PubMed ID: 10817662 [Abstract] [Full Text] [Related]
7. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres. Trinh HH, Lamb GD. Clin Exp Pharmacol Physiol; 2006 Jul 01; 33(7):591-600. PubMed ID: 16789925 [Abstract] [Full Text] [Related]
8. Muscle unloading induces slow to fast transitions in myofibrillar but not mitochondrial properties. Relevance to skeletal muscle abnormalities in heart failure. Bigard AX, Boehm E, Veksler V, Mateo P, Anflous K, Ventura-Clapier R. J Mol Cell Cardiol; 1998 Nov 01; 30(11):2391-401. PubMed ID: 9925374 [Abstract] [Full Text] [Related]
9. Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles. Bozzo C, Spolaore B, Toniolo L, Stevens L, Bastide B, Cieniewski-Bernard C, Fontana A, Mounier Y, Reggiani C. FEBS J; 2005 Nov 01; 272(22):5771-85. PubMed ID: 16279942 [Abstract] [Full Text] [Related]
10. Oxidative stress and nitric oxide synthase in skeletal muscles of rats with post-infarction, compensated chronic heart failure. Rush JW, Green HJ, Maclean DA, Code LM. Acta Physiol Scand; 2005 Nov 01; 185(3):211-8. PubMed ID: 16218926 [Abstract] [Full Text] [Related]
11. Muscle arteriolar and venular reactivity in two models of hypertensive rats. Losada M, Torres SH, Hernández N, Lippo M, Sosa A. Microvasc Res; 2005 May 01; 69(3):142-8. PubMed ID: 15896356 [Abstract] [Full Text] [Related]
12. Potential of memantine, D-tubocurarine, and atropine in preventing acute toxic myopathy induced by organophosphate nerve agents: soman, sarin, tabun and VX. Gupta RC, Dettbarn WD. Neurotoxicology; 1992 May 01; 13(3):649-61. PubMed ID: 1475066 [Abstract] [Full Text] [Related]
13. Toxic and neurogenic factors in chloroquine myopathy fibre selectivity. Velasco E, Finol HJ, Marquez A. J Submicrosc Cytol Pathol; 1995 Oct 01; 27(4):451-7. PubMed ID: 7585445 [Abstract] [Full Text] [Related]
14. Selective long-term electrical stimulation of fast glycolytic fibres increases capillary supply but not oxidative enzyme activity in rat skeletal muscles. Egginton S, Hudlická O. Exp Physiol; 2000 Sep 01; 85(5):567-73. PubMed ID: 11038408 [Abstract] [Full Text] [Related]
15. Erythropoietin induces a shift of muscle phenotype from fast glycolytic to slow oxidative. Cayla JL, Maire P, Duvallet A, Wahrmann JP. Int J Sports Med; 2008 Jun 01; 29(6):460-5. PubMed ID: 18080952 [Abstract] [Full Text] [Related]
16. Age-related changes of aqueous protein profiles in rat fast and slow twitch skeletal muscles. Cai D, Li M, Lee K, Lee K, Wong W, Chan K. Electrophoresis; 2000 Jan 01; 21(2):465-72. PubMed ID: 10675029 [Abstract] [Full Text] [Related]
17. F2-isoprostanes are not just markers of oxidative stress. Comporti M, Signorini C, Arezzini B, Vecchio D, Monaco B, Gardi C. Free Radic Biol Med; 2008 Feb 01; 44(3):247-56. PubMed ID: 17997380 [Abstract] [Full Text] [Related]
18. Thyroid hormone receptor-beta-selective agonist GC-24 spares skeletal muscle type I to II fiber shift. Miyabara EH, Aoki MS, Soares AG, Saltao RM, Vilicev CM, Passarelli M, Scanlan TS, Gouveia CH, Moriscot AS. Cell Tissue Res; 2005 Aug 01; 321(2):233-41. PubMed ID: 15947969 [Abstract] [Full Text] [Related]
19. Roles of exercise and pharmacokinetics in cerivastatin-induced skeletal muscle toxicity. Seachrist JL, Loi CM, Evans MG, Criswell KA, Rothwell CE. Toxicol Sci; 2005 Dec 01; 88(2):551-61. PubMed ID: 16141437 [Abstract] [Full Text] [Related]
20. Proteomic analysis of slow- and fast-twitch skeletal muscles. Okumura N, Hashida-Okumura A, Kita K, Matsubae M, Matsubara T, Takao T, Nagai K. Proteomics; 2005 Jul 01; 5(11):2896-906. PubMed ID: 15981298 [Abstract] [Full Text] [Related] Page: [Next] [New Search]