These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


328 related items for PubMed ID: 15666473

  • 1. Flue gas desulfurization: the state of the art.
    Srivastava RK, Jozewicz W.
    J Air Waste Manag Assoc; 2001 Dec; 51(12):1676-88. PubMed ID: 15666473
    [Abstract] [Full Text] [Related]

  • 2.
    Mock CN, Nugent R, Kobusingye O, Smith KR, Cropper ML, Guttikunda S, Jawahar P, Malik K, Partridge I.
    ; 2017 10 27. PubMed ID: 30212107
    [Abstract] [Full Text] [Related]

  • 3. The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations.
    Niksa S, Fujiwara N.
    J Air Waste Manag Assoc; 2005 Jul 27; 55(7):970-7. PubMed ID: 16111136
    [Abstract] [Full Text] [Related]

  • 4. Economics of an integrated approach to control SO2, NOX, HCl, and particulate emissions from power plants.
    Shemwell BE, Ergut A, Levendis YA.
    J Air Waste Manag Assoc; 2002 May 27; 52(5):521-34. PubMed ID: 12022692
    [Abstract] [Full Text] [Related]

  • 5. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR).
    Li Z, Jiang J, Ma Z, Fajardo OA, Deng J, Duan L.
    Environ Pollut; 2017 Nov 27; 230():655-662. PubMed ID: 28715770
    [Abstract] [Full Text] [Related]

  • 6. Investigation of aerosol and gas emissions from a coal-fired power plant under various operating conditions.
    Li Z, Wang Y, Lu Y, Biswas P.
    J Air Waste Manag Assoc; 2019 Jan 27; 69(1):34-46. PubMed ID: 30047848
    [Abstract] [Full Text] [Related]

  • 7. Simultaneous removal of NOx, SO2, and Hg from flue gas in FGD absorber with oxidant injection (NaClO2)- full-scale investigation.
    Jędrusik M, Łuszkiewicz D, Świerczok A, Gostomczyk MA, Kobylańska-Pawlisz M.
    J Air Waste Manag Assoc; 2020 Jun 27; 70(6):629-640. PubMed ID: 32182191
    [Abstract] [Full Text] [Related]

  • 8. Technical description of parameters influencing the pH value of suspension absorbent used in flue gas desulfurization systems.
    Głomba M.
    J Air Waste Manag Assoc; 2010 Aug 27; 60(8):1009-16. PubMed ID: 20842941
    [Abstract] [Full Text] [Related]

  • 9. Simultaneous absorption of NO and SO2 into hexamminecobalt(II)/iodide solution.
    Long XL, Xiao WD, Yuan WK.
    Chemosphere; 2005 May 27; 59(6):811-7. PubMed ID: 15811409
    [Abstract] [Full Text] [Related]

  • 10. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China.
    Wang S, Zhang L, Wu Y, Ancora MP, Zhao Y, Hao J.
    J Air Waste Manag Assoc; 2010 Jun 27; 60(6):722-30. PubMed ID: 20564998
    [Abstract] [Full Text] [Related]

  • 11. Modeling and optimization of wet flue gas desulfurization system based on a hybrid modeling method.
    Guo Y, Xu Z, Zheng C, Shu J, Dong H, Zhang Y, Weng W, Gao X.
    J Air Waste Manag Assoc; 2019 May 27; 69(5):565-575. PubMed ID: 30499760
    [Abstract] [Full Text] [Related]

  • 12. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.
    Tian H, Wang Y, Cheng K, Qu Y, Hao J, Xue Z, Chai F.
    J Air Waste Manag Assoc; 2012 May 27; 62(5):576-86. PubMed ID: 22696807
    [Abstract] [Full Text] [Related]

  • 13. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.
    Mokhtar MM, Taib RM, Hassim MH.
    J Air Waste Manag Assoc; 2014 Aug 27; 64(8):867-78. PubMed ID: 25185389
    [Abstract] [Full Text] [Related]

  • 14. Experimental study on removals of SO2 and NO(x) using adsorption of activated carbon/microwave desorption.
    Ma SC, Yao JJ, Gao L, Ma XY, Zhao Y.
    J Air Waste Manag Assoc; 2012 Sep 27; 62(9):1012-21. PubMed ID: 23019815
    [Abstract] [Full Text] [Related]

  • 15. Mercury removals by existing pollutants control devices of four coal-fired power plants in China.
    Wang J, Wang W, Xu W, Wang X, Zhao S.
    J Environ Sci (China); 2011 Sep 27; 23(11):1839-44. PubMed ID: 22432308
    [Abstract] [Full Text] [Related]

  • 16. Using Wet-FGD systems for mercury removal.
    Díaz-Somoano M, Unterberger S, Hein KR.
    J Environ Monit; 2005 Sep 27; 7(9):906-9. PubMed ID: 16121271
    [Abstract] [Full Text] [Related]

  • 17. Biogeochemical oxidation of calcium sulfite hemihydrate to gypsum in flue gas desulfurization byproduct using sulfur-oxidizing bacteria.
    Graves D, Smith JJ, Chen L, Kreinberg A, Wallace B, White R.
    J Environ Manage; 2017 Oct 01; 201():357-365. PubMed ID: 28692835
    [Abstract] [Full Text] [Related]

  • 18. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.
    Lee JY, Keener TC, Yang YJ.
    J Air Waste Manag Assoc; 2009 Jun 01; 59(6):725-32. PubMed ID: 19603740
    [Abstract] [Full Text] [Related]

  • 19. Emissions of sulfur trioxide from coal-fired power plants.
    Srivastava RK, Miller CA, Erickson C, Jambhekar R.
    J Air Waste Manag Assoc; 2004 Jun 01; 54(6):750-62. PubMed ID: 15242154
    [Abstract] [Full Text] [Related]

  • 20. Unexpectedly Increased Particle Emissions from the Steel Industry Determined by Wet/Semidry/Dry Flue Gas Desulfurization Technologies.
    Ding X, Li Q, Wu D, Liang Y, Xu X, Xie G, Wei Y, Sun H, Zhu C, Fu H, Chen J.
    Environ Sci Technol; 2019 Sep 03; 53(17):10361-10370. PubMed ID: 31390862
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.