These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 15667204

  • 21. A slow, tight-binding inhibitor of the zinc-dependent deacetylase LpxC of lipid A biosynthesis with antibiotic activity comparable to ciprofloxacin.
    McClerren AL, Endsley S, Bowman JL, Andersen NH, Guan Z, Rudolph J, Raetz CR.
    Biochemistry; 2005 Dec 20; 44(50):16574-83. PubMed ID: 16342948
    [Abstract] [Full Text] [Related]

  • 22. General base catalysis by the phosphatidylcholine-preferring phospholipase C from Bacillus cereus: the role of Glu4 and Asp55.
    Martin SF, Hergenrother PJ.
    Biochemistry; 1998 Apr 21; 37(16):5755-60. PubMed ID: 9548962
    [Abstract] [Full Text] [Related]

  • 23. Structure of the LpxC deacetylase with a bound substrate-analog inhibitor.
    Coggins BE, Li X, McClerren AL, Hindsgaul O, Raetz CR, Zhou P.
    Nat Struct Biol; 2003 Aug 21; 10(8):645-51. PubMed ID: 12833153
    [Abstract] [Full Text] [Related]

  • 24. DFT investigation on the mechanism of the deacetylation reaction catalyzed by LpxC.
    Robinet JJ, Gauld JW.
    J Phys Chem B; 2008 Mar 20; 112(11):3462-9. PubMed ID: 18302359
    [Abstract] [Full Text] [Related]

  • 25. The roles of the essential Asp-48 and highly conserved His-43 elucidated by the pH dependence of the pseudouridine synthase TruB.
    Hamilton CS, Spedaliere CJ, Ginter JM, Johnston MV, Mueller EG.
    Arch Biochem Biophys; 2005 Jan 01; 433(1):322-34. PubMed ID: 15581587
    [Abstract] [Full Text] [Related]

  • 26. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme.
    Karsten WE, Liu D, Rao GS, Harris BG, Cook PF.
    Biochemistry; 2005 Mar 08; 44(9):3626-35. PubMed ID: 15736972
    [Abstract] [Full Text] [Related]

  • 27. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M, Gadda G.
    Biochemistry; 2005 Jan 25; 44(3):893-904. PubMed ID: 15654745
    [Abstract] [Full Text] [Related]

  • 28. Activation of Escherichia coli UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase by Fe2+ yields a more efficient enzyme with altered ligand affinity.
    Hernick M, Gattis SG, Penner-Hahn JE, Fierke CA.
    Biochemistry; 2010 Mar 16; 49(10):2246-55. PubMed ID: 20136146
    [Abstract] [Full Text] [Related]

  • 29. The nucleotide-binding site of Aquifex aeolicus LpxC.
    Buetow L, Dawson A, Hunter WN.
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Nov 01; 62(Pt 11):1082-6. PubMed ID: 17077484
    [Abstract] [Full Text] [Related]

  • 30. Catalytic mechanism and molecular recognition of E. coli UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase probed by mutagenesis.
    Hernick M, Fierke CA.
    Biochemistry; 2006 Dec 26; 45(51):15240-8. PubMed ID: 17176046
    [Abstract] [Full Text] [Related]

  • 31. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U, Ranguelova K, Kappl R, Hüttermann J, Fetzner S.
    Biochemistry; 2004 Nov 16; 43(45):14485-99. PubMed ID: 15533053
    [Abstract] [Full Text] [Related]

  • 32. Catalytic mechanism of inulinase from Arthrobacter sp. S37.
    Kim KY, Nascimento AS, Golubev AM, Polikarpov I, Kim CS, Kang SI, Kim SI.
    Biochem Biophys Res Commun; 2008 Jul 11; 371(4):600-5. PubMed ID: 18395004
    [Abstract] [Full Text] [Related]

  • 33. Molecular validation of LpxC as an antibacterial drug target in Pseudomonas aeruginosa.
    Mdluli KE, Witte PR, Kline T, Barb AW, Erwin AL, Mansfield BE, McClerren AL, Pirrung MC, Tumey LN, Warrener P, Raetz CR, Stover CK.
    Antimicrob Agents Chemother; 2006 Jun 11; 50(6):2178-84. PubMed ID: 16723580
    [Abstract] [Full Text] [Related]

  • 34. Role of lysine-256 in Citrobacter freundii tyrosine phenol-lyase in monovalent cation activation.
    Phillips RS, Chen HY, Shim D, Lima S, Tavakoli K, Sundararaju B.
    Biochemistry; 2004 Nov 16; 43(45):14412-9. PubMed ID: 15533046
    [Abstract] [Full Text] [Related]

  • 35. Active site metal ion in UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) switches between Fe(II) and Zn(II) depending on cellular conditions.
    Gattis SG, Hernick M, Fierke CA.
    J Biol Chem; 2010 Oct 29; 285(44):33788-96. PubMed ID: 20709752
    [Abstract] [Full Text] [Related]

  • 36. Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase.
    Aubert SD, Li Y, Raushel FM.
    Biochemistry; 2004 May 18; 43(19):5707-15. PubMed ID: 15134445
    [Abstract] [Full Text] [Related]

  • 37. Binding of uridine 5'-diphosphate in the "basic patch" of the zinc deacetylase LpxC and implications for substrate binding.
    Gennadios HA, Christianson DW.
    Biochemistry; 2006 Dec 26; 45(51):15216-23. PubMed ID: 17176043
    [Abstract] [Full Text] [Related]

  • 38. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M, Yasukawa K, Hashida Y, Inouye K.
    J Biochem; 2006 Jun 26; 139(6):1017-23. PubMed ID: 16788052
    [Abstract] [Full Text] [Related]

  • 39. Evolution of enzymatic activity in the enolase superfamily: functional studies of the promiscuous o-succinylbenzoate synthase from Amycolatopsis.
    Taylor Ringia EA, Garrett JB, Thoden JB, Holden HM, Rayment I, Gerlt JA.
    Biochemistry; 2004 Jan 13; 43(1):224-9. PubMed ID: 14705949
    [Abstract] [Full Text] [Related]

  • 40. Catalytic mechanism of hamster arylamine N-acetyltransferase 2.
    Wang H, Liu L, Hanna PE, Wagner CR.
    Biochemistry; 2005 Aug 23; 44(33):11295-306. PubMed ID: 16101314
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.