These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


223 related items for PubMed ID: 15669692

  • 1. On the nature, evolution and future of quantitative structure-activity relationships (QSAR) in toxicology.
    Veith GD.
    SAR QSAR Environ Res; 2004; 15(5-6):323-30. PubMed ID: 15669692
    [Abstract] [Full Text] [Related]

  • 2. In silico modelling of hazard endpoints: current problems and perspectives.
    Mekenyan O, Dimitrov S, Schmieder P, Veith G.
    SAR QSAR Environ Res; 2003; 14(5-6):361-71. PubMed ID: 14758980
    [Abstract] [Full Text] [Related]

  • 3. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG, Arvidson KB, Chanderbhan RF, Contrera JF.
    Toxicol Appl Pharmacol; 2007 Jul 01; 222(1):1-16. PubMed ID: 17482223
    [Abstract] [Full Text] [Related]

  • 4. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials.
    Food Chem Toxicol; 2008 Mar 01; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [Abstract] [Full Text] [Related]

  • 5. Testing computational toxicology models with phytochemicals.
    Valerio LG, Arvidson KB, Busta E, Minnier BL, Kruhlak NL, Benz RD.
    Mol Nutr Food Res; 2010 Feb 01; 54(2):186-94. PubMed ID: 20024931
    [Abstract] [Full Text] [Related]

  • 6. Use of computer-assisted prediction of toxic effects of chemical substances.
    Simon-Hettich B, Rothfuss A, Steger-Hartmann T.
    Toxicology; 2006 Jul 05; 224(1-2):156-62. PubMed ID: 16707203
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y, Iyarreta-Veitía M, Montero-Torres A, Romero-Zaldivar C, Brandt CA, Avila PE, Kirchgatter K, Machado Y.
    J Chem Inf Model; 2005 Jul 05; 45(4):1082-100. PubMed ID: 16045304
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Quantitative structure-activity relationship modelling of the carcinogenic risk of nitroso compounds using regression analysis and the TOPS-MODE approach.
    Helguera AM, Pérez-Machado G, Cordeiro MN, Combes RD.
    SAR QSAR Environ Res; 2010 Apr 05; 21(3-4):277-304. PubMed ID: 20544552
    [Abstract] [Full Text] [Related]

  • 11. Substance-tailored testing strategies in toxicology: an in silico methodology based on QSAR modeling of toxicological thresholds and Monte Carlo simulations of toxicological testing.
    Péry AR, Desmots S, Mombelli E.
    Regul Toxicol Pharmacol; 2010 Feb 05; 56(1):82-92. PubMed ID: 19766156
    [Abstract] [Full Text] [Related]

  • 12. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E, Du T, Griff T, van den Berg HH, Soffers AE, Vervoort J, Murk AJ, Rietjens IM.
    Chemosphere; 2009 Jun 05; 75(11):1531-8. PubMed ID: 19376559
    [Abstract] [Full Text] [Related]

  • 13. Promises and pitfalls of quantitative structure-activity relationship approaches for predicting metabolism and toxicity.
    Zvinavashe E, Murk AJ, Rietjens IM.
    Chem Res Toxicol; 2008 Dec 05; 21(12):2229-36. PubMed ID: 19548346
    [Abstract] [Full Text] [Related]

  • 14. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R, Dix D.
    J Toxicol Environ Health B Crit Rev; 2010 Feb 05; 13(2-4):197-217. PubMed ID: 20574897
    [Abstract] [Full Text] [Related]

  • 15. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential.
    Winkler DA, Mombelli E, Pietroiusti A, Tran L, Worth A, Fadeel B, McCall MJ.
    Toxicology; 2013 Nov 08; 313(1):15-23. PubMed ID: 23165187
    [Abstract] [Full Text] [Related]

  • 16. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV, Sushko I, Pandey AK, Zhu H, Tropsha A, Papa E, Oberg T, Todeschini R, Fourches D, Varnek A.
    J Chem Inf Model; 2008 Sep 08; 48(9):1733-46. PubMed ID: 18729318
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. [Perspective of predictive toxicity assessment of in vivo repeated dose toxicity using structural activity relationship].
    Ono A.
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2010 Sep 08; (128):44-9. PubMed ID: 21381395
    [Abstract] [Full Text] [Related]

  • 19. Predictive models for carcinogenicity and mutagenicity: frameworks, state-of-the-art, and perspectives.
    Benfenati E, Benigni R, Demarini DM, Helma C, Kirkland D, Martin TM, Mazzatorta P, Ouédraogo-Arras G, Richard AM, Schilter B, Schoonen WG, Snyder RD, Yang C.
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2009 Apr 08; 27(2):57-90. PubMed ID: 19412856
    [Abstract] [Full Text] [Related]

  • 20. Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology.
    Perkins R, Fang H, Tong W, Welsh WJ.
    Environ Toxicol Chem; 2003 Aug 08; 22(8):1666-79. PubMed ID: 12924569
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.