These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
162 related items for PubMed ID: 15670921
1. Design and development of a fluorescent probe for monitoring hydrogen peroxide using photoinduced electron transfer. Soh N, Sakawaki O, Makihara K, Odo Y, Fukaminato T, Kawai T, Irie M, Imato T. Bioorg Med Chem; 2005 Feb 15; 13(4):1131-9. PubMed ID: 15670921 [Abstract] [Full Text] [Related]
2. Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe. Gabe Y, Urano Y, Kikuchi K, Kojima H, Nagano T. J Am Chem Soc; 2004 Mar 17; 126(10):3357-67. PubMed ID: 15012166 [Abstract] [Full Text] [Related]
3. Novel fluorescent probe for analysis of hydroperoxides based on boron dipyrromethane fluorophore. Inoue N, Suzuki Y, Yokoyama K, Karube I. Biosci Biotechnol Biochem; 2009 May 17; 73(5):1215-7. PubMed ID: 19420684 [Abstract] [Full Text] [Related]
4. First fluorescent photoinduced electron transfer (PET) reagent for hydroperoxides. Onoda M, Uchiyama S, Endo A, Tokuyama H, Santa T, Imai K. Org Lett; 2003 May 01; 5(9):1459-61. PubMed ID: 12713298 [Abstract] [Full Text] [Related]
5. Effect of the electron donor/acceptor orientation on the fluorescence transduction efficiency of the d-PET effect of carbazole-based fluorescent boronic acid sensors. Zhang X, Wu Y, Ji S, Guo H, Song P, Han K, Wu W, Wu W, James TD, Zhao J. J Org Chem; 2010 Apr 16; 75(8):2578-88. PubMed ID: 20307091 [Abstract] [Full Text] [Related]
6. Novel fluorescent probe for detecting hydroperoxides with strong emission in the visible range. Soh N, Ariyoshi T, Fukaminato T, Nakano K, Irie M, Imato T. Bioorg Med Chem Lett; 2006 Jun 01; 16(11):2943-6. PubMed ID: 16554153 [Abstract] [Full Text] [Related]
7. A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide. Albers AE, Okreglak VS, Chang CJ. J Am Chem Soc; 2006 Aug 02; 128(30):9640-1. PubMed ID: 16866512 [Abstract] [Full Text] [Related]
8. Development of a highly sensitive fluorescence probe for hydrogen peroxide. Abo M, Urano Y, Hanaoka K, Terai T, Komatsu T, Nagano T. J Am Chem Soc; 2011 Jul 13; 133(27):10629-37. PubMed ID: 21692459 [Abstract] [Full Text] [Related]
9. PET suppression of acridinedione dyes by urea derivatives in water and methanol. Kumaran R, Ramamurthy P. J Phys Chem B; 2006 Nov 30; 110(47):23783-9. PubMed ID: 17125340 [Abstract] [Full Text] [Related]
10. A coumarin-based two-photon probe for hydrogen peroxide. Zhang KM, Dou W, Li PX, Shen R, Ru JX, Liu W, Cui YM, Chen CY, Liu WS, Bai DC. Biosens Bioelectron; 2015 Feb 15; 64():542-6. PubMed ID: 25310486 [Abstract] [Full Text] [Related]
11. Hydrogen peroxide and expression of hipI-superoxide dismutase are associated with the development of secondary cell walls in Zinnia elegans. Karlsson M, Melzer M, Prokhorenko I, Johansson T, Wingsle G. J Exp Bot; 2005 Aug 15; 56(418):2085-93. PubMed ID: 15955789 [Abstract] [Full Text] [Related]
12. Single fluorescent probe distinguishes hydrogen peroxide and nitric oxide in cell imaging. Yuan L, Lin W, Zhu S, Zheng K, He L. Methods Enzymol; 2013 Aug 15; 526():83-106. PubMed ID: 23791095 [Abstract] [Full Text] [Related]
13. Effect of solvent hydrogen bonding on the photophysical properties of intramolecular charge transfer probe trans-ethyl p-(dimethylamino) cinamate and its derivative. Singh TS, Moyon NS, Mitra S. Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug 15; 73(4):630-6. PubMed ID: 19380249 [Abstract] [Full Text] [Related]
14. Development of a terbium complex-based luminescent probe for imaging endogenous hydrogen peroxide generation in plant tissues. Ye Z, Chen J, Wang G, Yuan J. Anal Chem; 2011 Jun 01; 83(11):4163-9. PubMed ID: 21548628 [Abstract] [Full Text] [Related]
15. A new specific fullerene-based fluorescent probe for trypsin. Xu K, Liu F, Ma J, Tang B. Analyst; 2011 Mar 21; 136(6):1199-203. PubMed ID: 21210045 [Abstract] [Full Text] [Related]
16. Phenol-based lipophilic fluorescent antioxidant indicators: a rational approach. Krumova K, Oleynik P, Karam P, Cosa G. J Org Chem; 2009 May 15; 74(10):3641-51. PubMed ID: 19364120 [Abstract] [Full Text] [Related]
17. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. Srikun D, Miller EW, Domaille DW, Chang CJ. J Am Chem Soc; 2008 Apr 09; 130(14):4596-7. PubMed ID: 18336027 [Abstract] [Full Text] [Related]
18. Detection of H2O2 by fluorescence correlation spectroscopy. Ito E, Watabe S, Morikawa M, Kodama H, Okada R, Miura T. Methods Enzymol; 2013 Apr 09; 526():135-43. PubMed ID: 23791098 [Abstract] [Full Text] [Related]
19. Endothelial nitric oxide synthase activation leads to dilatory H2O2 production in mouse cerebral arteries. Drouin A, Thorin-Trescases N, Hamel E, Falck JR, Thorin E. Cardiovasc Res; 2007 Jan 01; 73(1):73-81. PubMed ID: 17113574 [Abstract] [Full Text] [Related]
20. Simple PbII fluorescent probe based on PbII-catalyzed hydrolysis of phosphodiester. Sun M, Shangguan D, Ma H, Nie L, Li X, Xiong S, Liu G, Thiemann W. Biopolymers; 2003 Jan 01; 72(6):413-20. PubMed ID: 14587063 [Abstract] [Full Text] [Related] Page: [Next] [New Search]