These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Evaluation of artificial chaperoning behavior of an insoluble cyclodextrin-rich copolymer: solid-phase assisted refolding of carbonic anhydrase. Yazdanparast R, Khodarahmi R. Int J Biol Macromol; 2007 Mar 10; 40(4):319-26. PubMed ID: 17027077 [Abstract] [Full Text] [Related]
3. Operational regimes for a simplified one-step artificial chaperone refolding method. Lanckriet H, Middelberg AP. Biotechnol Prog; 2004 Mar 10; 20(6):1861-7. PubMed ID: 15575723 [Abstract] [Full Text] [Related]
4. Comparative studies of the artificial chaperone-assisted refolding of thermally denatured bovine carbonic anhydrase using different capturing ionic detergents and beta-cyclodextrin. Yazdanparast R, Khodarahmi R, Soori E. Arch Biochem Biophys; 2005 May 15; 437(2):178-85. PubMed ID: 15850557 [Abstract] [Full Text] [Related]
5. Synthesis and characterization of beta-cyclodextrin-conjugated magnetic nanoparticles and their uses as solid-phase artificial chaperones in refolding of carbonic anhydrase bovine. Badruddoza AZ, Hidajat K, Uddin MS. J Colloid Interface Sci; 2010 Jun 15; 346(2):337-46. PubMed ID: 20350725 [Abstract] [Full Text] [Related]
6. Artificial chaperone-assisted refolding in a microchannel. Yamamoto E, Yamaguchi S, Sasaki N, Kim HB, Kitamori T, Nagamune T. Bioprocess Biosyst Eng; 2010 Jan 15; 33(1):171-7. PubMed ID: 19727834 [Abstract] [Full Text] [Related]
7. Cooperative effect of artificial chaperones and guanidinium chloride on lysozyme renaturation at high concentrations. Dong XY, Shi JH, Sun Y. Biotechnol Prog; 2002 Jan 15; 18(3):663-5. PubMed ID: 12052090 [Abstract] [Full Text] [Related]
9. Lysozyme refolding with cyclodextrins: structure-activity relationship. Desai A, Lee C, Sharma L, Sharma A. Biochimie; 2006 Oct 15; 88(10):1435-45. PubMed ID: 16737767 [Abstract] [Full Text] [Related]
10. Novel surface modified molecularly imprinted polymer using acryloyl-beta-cyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution. Zhang W, Qin L, He XW, Li WY, Zhang YK. J Chromatogr A; 2009 May 22; 1216(21):4560-7. PubMed ID: 19361806 [Abstract] [Full Text] [Related]
11. Mechanistic comparison of artificial-chaperone-assisted and unassisted refolding of urea-denatured carbonic anhydrase B. Hanson PE, Gellman SH. Fold Des; 1998 May 22; 3(6):457-68. PubMed ID: 9889157 [Abstract] [Full Text] [Related]
12. Fluorimetric study of the artificial chaperone-assisted renaturation of carbonic anhydrase: a kinetic analysis. Khodarahmi R, Yazdanparast R. Int J Biol Macromol; 2005 Aug 22; 36(3):191-7. PubMed ID: 16051345 [Abstract] [Full Text] [Related]
13. Artificial chaperone-assisted refolding of denatured-reduced lysozyme: modulation of the competition between renaturation and aggregation. Rozema D, Gellman SH. Biochemistry; 1996 Dec 10; 35(49):15760-71. PubMed ID: 8961939 [Abstract] [Full Text] [Related]
14. Molecularly imprinted polymer-assisted refolding of lysozyme. Haruki M, Konnai Y, Shimada A, Takeuchi H. Biotechnol Prog; 2007 Dec 10; 23(5):1254-7. PubMed ID: 17672479 [Abstract] [Full Text] [Related]
15. Enzyme-responsive artificial chaperone system with amphiphilic amylose primer. Morimoto N, Ogino N, Narita T, Akiyoshi K. J Biotechnol; 2009 Mar 25; 140(3-4):246-9. PubMed ID: 19428720 [Abstract] [Full Text] [Related]
16. Protein refolding assisted by molecular tube based alpha-cyclodextrin as an artificial chaperone. Yazdanparast R, Esmaeili MA, Khodarahmi R. Biochemistry (Mosc); 2006 Dec 25; 71(12):1298-306. PubMed ID: 17223780 [Abstract] [Full Text] [Related]
17. Refolding of denatured/reduced lysozyme at high concentrations by artificial molecular chaperone-ion exchange chromatography. Wang C, Zhang Q, Cheng Y, Wang L. Biotechnol Prog; 2010 Dec 25; 26(4):1073-9. PubMed ID: 20730764 [Abstract] [Full Text] [Related]
18. Artificial chaperone-assisted refolding of bovine carbonic anhydrase using molecular assemblies of stimuli-responsive polymers. Yoshimoto N, Hashimoto T, Felix MM, Umakoshi H, Kuboi R. Biomacromolecules; 2003 Dec 25; 4(6):1530-8. PubMed ID: 14606877 [Abstract] [Full Text] [Related]