These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


227 related items for PubMed ID: 15673717

  • 1. Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus.
    Napoli A, Valenti A, Salerno V, Nadal M, Garnier F, Rossi M, Ciaramella M.
    Nucleic Acids Res; 2005; 33(2):564-76. PubMed ID: 15673717
    [Abstract] [Full Text] [Related]

  • 2. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP, Klostermeier D.
    J Mol Biol; 2007 Aug 03; 371(1):197-209. PubMed ID: 17560602
    [Abstract] [Full Text] [Related]

  • 3. Reverse gyrase: an unusual DNA manipulator of hyperthermophilic organisms.
    D'Amaro A, Rossi M, Ciaramella M.
    Ital J Biochem; 2007 Jun 03; 56(2):103-9. PubMed ID: 17722650
    [Abstract] [Full Text] [Related]

  • 4. Physical and functional interaction between archaeal single-stranded DNA-binding protein and the 5'-3' nuclease NurA.
    Wei T, Zhang S, Zhu S, Sheng D, Ni J, Shen Y.
    Biochem Biophys Res Commun; 2008 Mar 14; 367(3):523-9. PubMed ID: 18194801
    [Abstract] [Full Text] [Related]

  • 5. Influence of chromatin and single strand binding proteins on the activity of an archaeal MCM.
    Marsh VL, McGeoch AT, Bell SD.
    J Mol Biol; 2006 Apr 14; 357(5):1345-50. PubMed ID: 16490210
    [Abstract] [Full Text] [Related]

  • 6. The conformational flexibility of the helicase-like domain from Thermotoga maritima reverse gyrase is restricted by the topoisomerase domain.
    del Toro Duany Y, Klostermeier D, Rudolph MG.
    Biochemistry; 2011 Jul 05; 50(26):5816-23. PubMed ID: 21627332
    [Abstract] [Full Text] [Related]

  • 7. Functional cooperation between topoisomerase I and single strand DNA-binding protein.
    Sikder D, Unniraman S, Bhaduri T, Nagaraja V.
    J Mol Biol; 2001 Mar 02; 306(4):669-79. PubMed ID: 11243779
    [Abstract] [Full Text] [Related]

  • 8. Reverse gyrase recruitment to DNA after UV light irradiation in Sulfolobus solfataricus.
    Napoli A, Valenti A, Salerno V, Nadal M, Garnier F, Rossi M, Ciaramella M.
    J Biol Chem; 2004 Aug 06; 279(32):33192-8. PubMed ID: 15190074
    [Abstract] [Full Text] [Related]

  • 9. Nucleotide-driven conformational changes in the reverse gyrase helicase-like domain couple the nucleotide cycle to DNA processing.
    del Toro Duany Y, Klostermeier D.
    Phys Chem Chem Phys; 2011 Jun 07; 13(21):10009-19. PubMed ID: 21350762
    [Abstract] [Full Text] [Related]

  • 10. Reverse gyrase transiently unwinds double-stranded DNA in an ATP-dependent reaction.
    Ganguly A, del Toro Duany Y, Klostermeier D.
    J Mol Biol; 2013 Jan 09; 425(1):32-40. PubMed ID: 23123378
    [Abstract] [Full Text] [Related]

  • 11. Reverse gyrase and genome stability in hyperthermophilic organisms.
    Perugino G, Valenti A, D'amaro A, Rossi M, Ciaramella M.
    Biochem Soc Trans; 2009 Feb 09; 37(Pt 1):69-73. PubMed ID: 19143604
    [Abstract] [Full Text] [Related]

  • 12. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase.
    Rodríguez AC.
    Biochemistry; 2003 May 27; 42(20):5993-6004. PubMed ID: 12755601
    [Abstract] [Full Text] [Related]

  • 13. Physical and functional interaction of the archaeal single-stranded DNA-binding protein SSB with RNA polymerase.
    Richard DJ, Bell SD, White MF.
    Nucleic Acids Res; 2004 May 27; 32(3):1065-74. PubMed ID: 14872062
    [Abstract] [Full Text] [Related]

  • 14. Inhibition of translesion DNA polymerase by archaeal reverse gyrase.
    Valenti A, Perugino G, Nohmi T, Rossi M, Ciaramella M.
    Nucleic Acids Res; 2009 Jul 27; 37(13):4287-95. PubMed ID: 19443439
    [Abstract] [Full Text] [Related]

  • 15. Interaction of the ADP-ribosylating enzyme from the hyperthermophilic archaeon S. solfataricus with DNA and ss-oligo deoxy ribonucleotides.
    Faraone-Mennella MR, Piccialli G, De Luca P, Castellano S, Giordano A, Rigano D, De Napoli L, Farina B.
    J Cell Biochem; 2002 Jul 27; 85(1):146-57. PubMed ID: 11891858
    [Abstract] [Full Text] [Related]

  • 16. TopR2, the second reverse gyrase of Sulfolobus solfataricus, exhibits unusual properties.
    Bizard A, Garnier F, Nadal M.
    J Mol Biol; 2011 May 20; 408(5):839-49. PubMed ID: 21435345
    [Abstract] [Full Text] [Related]

  • 17. Reverse gyrase binding to DNA alters the double helix structure and produces single-strand cleavage in the absence of ATP.
    Jaxel C, Nadal M, Mirambeau G, Forterre P, Takahashi M, Duguet M.
    EMBO J; 1989 Oct 20; 8(10):3135-9. PubMed ID: 2555155
    [Abstract] [Full Text] [Related]

  • 18. Differential contributions of the latch in Thermotoga maritima reverse gyrase to the binding of single-stranded DNA before and after ATP hydrolysis.
    Del Toro Duany Y, Ganguly A, Klostermeier D.
    Biol Chem; 2014 Jan 20; 395(1):83-93. PubMed ID: 23959663
    [Abstract] [Full Text] [Related]

  • 19. Locking the ATP-operated clamp of DNA gyrase: probing the mechanism of strand passage.
    Williams NL, Howells AJ, Maxwell A.
    J Mol Biol; 2001 Mar 09; 306(5):969-84. PubMed ID: 11237612
    [Abstract] [Full Text] [Related]

  • 20. DNA damage detection by an archaeal single-stranded DNA-binding protein.
    Cubeddu L, White MF.
    J Mol Biol; 2005 Oct 28; 353(3):507-16. PubMed ID: 16181640
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.