These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
170 related items for PubMed ID: 15681693
1. Mechanistic model of cardiac energy metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia. Zhou L, Salem JE, Saidel GM, Stanley WC, Cabrera ME. Am J Physiol Heart Circ Physiol; 2005 May; 288(5):H2400-11. PubMed ID: 15681693 [Abstract] [Full Text] [Related]
2. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies. Zhou L, Stanley WC, Saidel GM, Yu X, Cabrera ME. J Physiol; 2005 Dec 15; 569(Pt 3):925-37. PubMed ID: 16223766 [Abstract] [Full Text] [Related]
3. Mechanistic model of myocardial energy metabolism under normal and ischemic conditions. Salem JE, Saidel GM, Stanley WC, Cabrera ME. Ann Biomed Eng; 2002 Feb 15; 30(2):202-16. PubMed ID: 11962772 [Abstract] [Full Text] [Related]
4. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies. Li Y, Dash RK, Kim J, Saidel GM, Cabrera ME. Am J Physiol Cell Physiol; 2009 Jan 15; 296(1):C25-46. PubMed ID: 18829894 [Abstract] [Full Text] [Related]
5. Role of cellular compartmentation in the metabolic response to stress: mechanistic insights from computational models. Zhou L, Yu X, Cabrera ME, Stanley WC. Ann N Y Acad Sci; 2006 Oct 15; 1080():120-39. PubMed ID: 17132780 [Abstract] [Full Text] [Related]
6. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs. Zhou L, Cabrera ME, Huang H, Yuan CL, Monika DK, Sharma N, Bian F, Stanley WC. J Physiol; 2007 Mar 15; 579(Pt 3):811-21. PubMed ID: 17185335 [Abstract] [Full Text] [Related]
7. Computational studies of the effects of myocardial blood flow reductions on cardiac metabolism. Salem JE, Stanley WC, Cabrera ME. Biomed Eng Online; 2004 Jun 02; 3(1):15. PubMed ID: 15175110 [Abstract] [Full Text] [Related]
8. Role of the malate-aspartate shuttle on the metabolic response to myocardial ischemia. Lu M, Zhou L, Stanley WC, Cabrera ME, Saidel GM, Yu X. J Theor Biol; 2008 Sep 21; 254(2):466-75. PubMed ID: 18603266 [Abstract] [Full Text] [Related]
9. Regulation of cardiac energetics: role of redox state and cellular compartmentation during ischemia. Cabrera ME, Zhou L, Stanley WC, Saidel GM. Ann N Y Acad Sci; 2005 Jun 21; 1047():259-70. PubMed ID: 16093502 [Abstract] [Full Text] [Related]
10. Limited transfer of cytosolic NADH into mitochondria at high cardiac workload. O'Donnell JM, Kudej RK, LaNoue KF, Vatner SF, Lewandowski ED. Am J Physiol Heart Circ Physiol; 2004 Jun 21; 286(6):H2237-42. PubMed ID: 14751856 [Abstract] [Full Text] [Related]
11. Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies. Zhou L, Cabrera ME, Okere IC, Sharma N, Stanley WC. Am J Physiol Heart Circ Physiol; 2006 Sep 21; 291(3):H1036-46. PubMed ID: 16603683 [Abstract] [Full Text] [Related]
12. Metabolic effects of aldose reductase inhibition during low-flow ischemia and reperfusion. Ramasamy R, Trueblood N, Schaefer S. Am J Physiol; 1998 Jul 21; 275(1):H195-203. PubMed ID: 9688914 [Abstract] [Full Text] [Related]
13. Soluble adenylyl cyclase regulates the cytosolic NADH/NAD+ redox state and the bioenergetic switch between glycolysis and oxidative phosphorylation. Chang JC, Go S, Gilglioni EH, Duijst S, Panneman DM, Rodenburg RJ, Li HL, Huang HL, Levin LR, Buck J, Verhoeven AJ, Oude Elferink RPJ. Biochim Biophys Acta Bioenerg; 2021 Apr 01; 1862(4):148367. PubMed ID: 33412125 [Abstract] [Full Text] [Related]
14. Metabolic dynamics in skeletal muscle during acute reduction in blood flow and oxygen supply to mitochondria: in-silico studies using a multi-scale, top-down integrated model. Dash RK, Li Y, Kim J, Beard DA, Saidel GM, Cabrera ME. PLoS One; 2008 Sep 09; 3(9):e3168. PubMed ID: 18779864 [Abstract] [Full Text] [Related]
15. Alteration of the cytosolic-mitochondrial distribution of high-energy phosphates during global myocardial ischemia may contribute to early contractile failure. Rauch U, Schulze K, Witzenbichler B, Schultheiss HP. Circ Res; 1994 Oct 09; 75(4):760-9. PubMed ID: 7923621 [Abstract] [Full Text] [Related]
16. Glucose requirement for postischemic recovery of perfused working heart. Mallet RT, Hartman DA, Bünger R. Eur J Biochem; 1990 Mar 10; 188(2):481-93. PubMed ID: 2318214 [Abstract] [Full Text] [Related]
17. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor. Obrosova I, Faller A, Burgan J, Ostrow E, Williamson JR. Curr Eye Res; 1997 Jan 10; 16(1):34-43. PubMed ID: 9043821 [Abstract] [Full Text] [Related]
18. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW. Am J Physiol; 1995 Jan 10; 268(1 Pt 2):H82-91. PubMed ID: 7840306 [Abstract] [Full Text] [Related]
19. Glycolysis protects sarcolemmal membrane integrity during total ischemia in the rat heart. Askenasy N. Basic Res Cardiol; 2001 Nov 10; 96(6):612-22. PubMed ID: 11770080 [Abstract] [Full Text] [Related]
20. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states. Jong YS, Davis EJ. Arch Biochem Biophys; 1983 Apr 01; 222(1):179-91. PubMed ID: 6220674 [Abstract] [Full Text] [Related] Page: [Next] [New Search]