These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
295 related items for PubMed ID: 15683252
1. Contributions of cysteine residues in Zn2 to zinc fingers and thiol-disulfide oxidoreductase activities of chaperone DnaJ. Shi YY, Tang W, Hao SF, Wang CC. Biochemistry; 2005 Feb 08; 44(5):1683-9. PubMed ID: 15683252 [Abstract] [Full Text] [Related]
2. Zinc fingers and thiol-disulfide oxidoreductase activities of chaperone DnaJ. Tang W, Wang CC. Biochemistry; 2001 Dec 11; 40(49):14985-94. PubMed ID: 11732919 [Abstract] [Full Text] [Related]
3. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface. Stasser JP, Eisses JF, Barry AN, Kaplan JH, Blackburn NJ. Biochemistry; 2005 Mar 08; 44(9):3143-52. PubMed ID: 15736924 [Abstract] [Full Text] [Related]
4. Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. Martinez-Yamout M, Legge GB, Zhang O, Wright PE, Dyson HJ. J Mol Biol; 2000 Jul 21; 300(4):805-18. PubMed ID: 10891270 [Abstract] [Full Text] [Related]
5. Crystal structure of Hsc20, a J-type Co-chaperone from Escherichia coli. Cupp-Vickery JR, Vickery LE. J Mol Biol; 2000 Dec 15; 304(5):835-45. PubMed ID: 11124030 [Abstract] [Full Text] [Related]
6. Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. Kleemann R, Kapurniotu A, Frank RW, Gessner A, Mischke R, Flieger O, Jüttner S, Brunner H, Bernhagen J. J Mol Biol; 1998 Jul 03; 280(1):85-102. PubMed ID: 9653033 [Abstract] [Full Text] [Related]
7. Rational mutagenesis of a 40 kDa heat shock protein from Agrobacterium tumefaciens identifies amino acid residues critical to its in vivo function. Hennessy F, Boshoff A, Blatch GL. Int J Biochem Cell Biol; 2005 Jan 03; 37(1):177-91. PubMed ID: 15381160 [Abstract] [Full Text] [Related]
8. Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity. Kim SJ, Jeong DG, Chi SW, Lee JS, Ryu SE. Nat Struct Biol; 2001 May 03; 8(5):459-66. PubMed ID: 11323724 [Abstract] [Full Text] [Related]
9. Characterization of the activity and folding of the glutathione transferase from Escherichia coli and the roles of residues Cys(10) and His(106). Wang XY, Zhang ZR, Perrett S. Biochem J; 2009 Jan 01; 417(1):55-64. PubMed ID: 18778244 [Abstract] [Full Text] [Related]
10. Crystal structures of E. coli CcmG and its mutants reveal key roles of the N-terminal beta-sheet and the fingerprint region. Ouyang N, Gao YG, Hu HY, Xia ZX. Proteins; 2006 Dec 01; 65(4):1021-31. PubMed ID: 17019698 [Abstract] [Full Text] [Related]
11. Metal ion affinities of the zinc finger domains of the metal responsive element-binding transcription factor-1 (MTF1). Guerrerio AL, Berg JM. Biochemistry; 2004 May 11; 43(18):5437-44. PubMed ID: 15122909 [Abstract] [Full Text] [Related]
12. "Zn-link": a metal-sharing interface that organizes the quaternary structure and catalytic site of the endoribonuclease, RNase E. Callaghan AJ, Redko Y, Murphy LM, Grossmann JG, Yates D, Garman E, Ilag LL, Robinson CV, Symmons MF, McDowall KJ, Luisi BF. Biochemistry; 2005 Mar 29; 44(12):4667-75. PubMed ID: 15779893 [Abstract] [Full Text] [Related]
13. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Rodriguez F, Arsène-Ploetze F, Rist W, Rüdiger S, Schneider-Mergener J, Mayer MP, Bukau B. Mol Cell; 2008 Nov 07; 32(3):347-58. PubMed ID: 18995833 [Abstract] [Full Text] [Related]
14. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR, Chen YW, Dekker EE. Arch Biochem Biophys; 1998 Oct 15; 358(2):211-21. PubMed ID: 9784233 [Abstract] [Full Text] [Related]
15. All three J-domain proteins of the Escherichia coli DnaK chaperone machinery are DNA binding proteins. Gur E, Katz C, Ron EZ. FEBS Lett; 2005 Mar 28; 579(9):1935-9. PubMed ID: 15792799 [Abstract] [Full Text] [Related]
16. Reactivity of the human thioltransferase (glutaredoxin) C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflect catalytic specificity. Yang Y, Jao Sc, Nanduri S, Starke DW, Mieyal JJ, Qin J. Biochemistry; 1998 Dec 08; 37(49):17145-56. PubMed ID: 9860827 [Abstract] [Full Text] [Related]
17. Effects of substitutions in the CXXC active-site motif of the extracytoplasmic thioredoxin ResA. Lewin A, Crow A, Hodson CT, Hederstedt L, Le Brun NE. Biochem J; 2008 Aug 15; 414(1):81-91. PubMed ID: 18422485 [Abstract] [Full Text] [Related]
18. Facilitated transfer of IscU-[2Fe2S] clusters by chaperone-mediated ligand exchange. Bonomi F, Iametti S, Morleo A, Ta D, Vickery LE. Biochemistry; 2011 Nov 08; 50(44):9641-50. PubMed ID: 21977977 [Abstract] [Full Text] [Related]
19. General acid/base catalysis in the active site of Escherichia coli thioredoxin. Chivers PT, Raines RT. Biochemistry; 1997 Dec 16; 36(50):15810-6. PubMed ID: 9398311 [Abstract] [Full Text] [Related]
20. Formation of an antiparallel, intermolecular coiled coil is associated with in vivo dimerization of osmosensor and osmoprotectant transporter ProP in Escherichia coli. Hillar A, Culham DE, Vernikovska YI, Wood JM, Boggs JM. Biochemistry; 2005 Aug 02; 44(30):10170-80. PubMed ID: 16042394 [Abstract] [Full Text] [Related] Page: [Next] [New Search]