These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 15685598
41. Construction of an active acetohydroxyacid synthase I with a flexible linker connecting the catalytic and the regulatory subunits. Vyazmensky M, Engel S, Kryukov O, Berkovich-Berger D, Kaplun L. Biochim Biophys Acta; 2006 May; 1764(5):955-960. PubMed ID: 16795146 [Abstract] [Full Text] [Related]
42. Crystal structures of two novel sulfonylurea herbicides in complex with Arabidopsis thaliana acetohydroxyacid synthase. Wang JG, Lee PK, Dong YH, Pang SS, Duggleby RG, Li ZM, Guddat LW. FEBS J; 2009 Mar; 276(5):1282-90. PubMed ID: 19187232 [Abstract] [Full Text] [Related]
43. Subunit association in acetohydroxy acid synthase isozyme III. Sella C, Weinstock O, Barak Z, Chipman DM. J Bacteriol; 1993 Sep; 175(17):5339-43. PubMed ID: 8366022 [Abstract] [Full Text] [Related]
44. Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor. Patel UD, Suresh S. J Colloid Interface Sci; 2008 Mar 15; 319(2):462-9. PubMed ID: 18187143 [Abstract] [Full Text] [Related]
45. Re-investigation of in vitro activity of acetohydroxyacid synthase I holoenzyme from Escherichia coli. Wang HL, Sun HP, Zheng PR, Cheng RT, Liu ZW, Yuan H, Gao WY, Li H. Arch Biochem Biophys; 2024 Apr 15; 754():109962. PubMed ID: 38499055 [Abstract] [Full Text] [Related]
46. [Novel immobilization of arginase I via cellulose-binding domain and its application in producing of L-ornitine]. Li M, Iang J, Qu H, Zhang Q, Bai F, Bai G. Prikl Biokhim Mikrobiol; 2014 Apr 15; 50(1):52-8. PubMed ID: 25272752 [Abstract] [Full Text] [Related]
47. Rational design based on bioactive conformation analysis of pyrimidinylbenzoates as acetohydroxyacid synthase inhibitors by integrating molecular docking, CoMFA, CoMSIA, and DFT calculations. He YZ, Li YX, Zhu XL, Xi Z, Niu C, Wan J, Zhang L, Yang GF. J Chem Inf Model; 2007 Apr 15; 47(6):2335-44. PubMed ID: 17887745 [Abstract] [Full Text] [Related]
48. Regulation of yeast acetohydroxyacid synthase by valine and ATP. Pang SS, Duggleby RG. Biochem J; 2001 Aug 01; 357(Pt 3):749-57. PubMed ID: 11463345 [Abstract] [Full Text] [Related]
49. Roles of three well-conserved arginine residues in mediating the catalytic activity of tobacco acetohydroxy acid synthase. Le DT, Yoon MY, Kim YT, Choi JD. J Biochem; 2005 Jul 01; 138(1):35-40. PubMed ID: 16046446 [Abstract] [Full Text] [Related]
50. Biochemical and transcription analysis of acetohydroxyacid synthase isoforms in Mycobacterium tuberculosis identifies these enzymes as potential targets for drug development. Singh V, Chandra D, Srivastava BS, Srivastava R. Microbiology (Reading); 2011 Jan 01; 157(Pt 1):29-37. PubMed ID: 20884690 [Abstract] [Full Text] [Related]
51. Continuous production of chiral 1,3-butanediol using immobilized biocatalysts in a packed bed reactor: promising biocatalysis method with an asymmetric hydrogen-transfer bioreduction. Itoh N, Nakamura M, Inoue K, Makino Y. Appl Microbiol Biotechnol; 2007 Jul 01; 75(6):1249-56. PubMed ID: 17443321 [Abstract] [Full Text] [Related]
52. Mechanisms of acetohydroxyacid synthases. Chipman DM, Duggleby RG, Tittmann K. Curr Opin Chem Biol; 2005 Oct 01; 9(5):475-81. PubMed ID: 16055369 [Abstract] [Full Text] [Related]
53. Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes. Thomsen MS, Nidetzky B. Biotechnol J; 2009 Jan 01; 4(1):98-107. PubMed ID: 18618472 [Abstract] [Full Text] [Related]
54. cBSA-147 for the preparation of bacterial biofilms in a microchannel reactor. Ng JF, Jaenicke S, Eisele K, Dorn J, Weil T. Biointerphases; 2010 Sep 01; 5(3):FA41-7. PubMed ID: 21171712 [Abstract] [Full Text] [Related]
55. Effects of the PT region of EngD and HLD of CbpA on solubility, catalytic activity and purification characteristics of EngD-CBD(CbpA) fusions from Clostridium cellulovorans. Yeh M, Craig S, Lum MG, Foong FC. J Biotechnol; 2005 Mar 30; 116(3):233-44. PubMed ID: 15707684 [Abstract] [Full Text] [Related]
56. Characterization of a cellulose binding domain from Clostridium cellulovorans endoglucanase-xylanase D and its use as a fusion partner for soluble protein expression in Escherichia coli. Xu Y, Foong FC. J Biotechnol; 2008 Jul 31; 135(4):319-25. PubMed ID: 18585812 [Abstract] [Full Text] [Related]
57. [Stability of the biocatalysts of L-aspartic acid synthesis based on immobilized Escherichia coli cells]. Zueva NN, Iakovleva VI, Avsiuk IV, Arens AK, Fechina VA. Prikl Biokhim Mikrobiol; 1982 Jul 31; 18(5):681-7. PubMed ID: 6755439 [Abstract] [Full Text] [Related]
58. Molecular architecture of the acetohydroxyacid synthase holoenzyme. Zhang Y, Li Y, Liu X, Sun J, Li X, Lin J, Yang X, Xi Z, Shen Y. Biochem J; 2020 Jul 17; 477(13):2439-2449. PubMed ID: 32538427 [Abstract] [Full Text] [Related]
59. Kinetics of beta-lactam antibiotics synthesis by penicillin G acylase (PGA) from the viewpoint of the industrial enzymatic reactor optimization. Giordano RC, Ribeiro MP, Giordano RL. Biotechnol Adv; 2006 Jul 17; 24(1):27-41. PubMed ID: 15990267 [Abstract] [Full Text] [Related]
60. Mechanistic study of the biosynthesis of R-phenylcarbinol by acetohydroxyacid synthase enzyme using hybrid quantum mechanics/molecular mechanics simulations. Alvarado O, García-Meseguer R, Ruiz-Pernía JJ, Tuñon I, Delgado EJ. Arch Biochem Biophys; 2021 Apr 15; 701():108807. PubMed ID: 33587902 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]