These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
227 related items for PubMed ID: 15697233
1. Role of sterol superlattice in free radical-induced sterol oxidation in lipid membranes. Olsher M, Yoon SI, Chong PL. Biochemistry; 2005 Feb 15; 44(6):2080-7. PubMed ID: 15697233 [Abstract] [Full Text] [Related]
2. Fluorometric assay for detection of sterol oxidation in liposomal membranes. Chong PL, Olsher M. Methods Mol Biol; 2007 Feb 15; 400():145-58. PubMed ID: 17951732 [Abstract] [Full Text] [Related]
3. Cholesterol superlattice modulates the activity of cholesterol oxidase in lipid membranes. Wang MM, Olsher M, Sugár IP, Chong PL. Biochemistry; 2004 Mar 02; 43(8):2159-66. PubMed ID: 14979712 [Abstract] [Full Text] [Related]
4. Cholesterol and ergosterol superlattices in three-component liquid crystalline lipid bilayers as revealed by dehydroergosterol fluorescence. Liu F, Sugar IP, Chong PL. Biophys J; 1997 May 02; 72(5):2243-54. PubMed ID: 9129827 [Abstract] [Full Text] [Related]
5. Role of the sterol superlattice in the partitioning of the antifungal drug nystatin into lipid membranes. Wang MM, Sugar IP, Chong PL. Biochemistry; 1998 Aug 25; 37(34):11797-805. PubMed ID: 9718302 [Abstract] [Full Text] [Related]
6. Protection of membrane cholesterol by sphingomyelin against free radical-mediated oxidation. Sargis RM, Subbaiah PV. Free Radic Biol Med; 2006 Jun 15; 40(12):2092-102. PubMed ID: 16785023 [Abstract] [Full Text] [Related]
7. Fluorescence studies of dehydroergosterol in phosphatidylethanolamine/phosphatidylcholine bilayers. Cheng KH, Virtanen J, Somerharju P. Biophys J; 1999 Dec 15; 77(6):3108-19. PubMed ID: 10585932 [Abstract] [Full Text] [Related]
8. Evidence for a regulatory role of cholesterol superlattices in the hydrolytic activity of secretory phospholipase A2 in lipid membranes. Liu F, Chong PL. Biochemistry; 1999 Mar 30; 38(13):3867-73. PubMed ID: 10194297 [Abstract] [Full Text] [Related]
9. Critical factors for detection of biphasic changes in membrane properties at specific sterol mole fractions for maximal superlattice formation. Venegas B, Sugár I, Chong PL. J Phys Chem B; 2007 May 17; 111(19):5180-92. PubMed ID: 17441759 [Abstract] [Full Text] [Related]
10. The fluorescent cholesterol analog dehydroergosterol induces liquid-ordered domains in model membranes. Garvik O, Benediktson P, Simonsen AC, Ipsen JH, Wüstner D. Chem Phys Lipids; 2009 Jun 17; 159(2):114-8. PubMed ID: 19477318 [Abstract] [Full Text] [Related]
11. Rapid transbilayer movement of the fluorescent sterol dehydroergosterol in lipid membranes. John K, Kubelt J, Müller P, Wüstner D, Herrmann A. Biophys J; 2002 Sep 17; 83(3):1525-34. PubMed ID: 12202377 [Abstract] [Full Text] [Related]
12. Sterol superlattice affects antioxidant potency and can be used to assess adverse effects of antioxidants. Olsher M, Chong PL. Anal Biochem; 2008 Nov 01; 382(1):1-8. PubMed ID: 18694720 [Abstract] [Full Text] [Related]
13. Small-angle neutron scattering studies of the effects of amphotericin B on phospholipid and phospholipid-sterol membrane structure. Foglia F, Drake AF, Terry AE, Rogers SE, Lawrence MJ, Barlow DJ. Biochim Biophys Acta; 2011 Jun 01; 1808(6):1574-80. PubMed ID: 21334304 [Abstract] [Full Text] [Related]
14. A fluorescence study of dehydroergosterol in phosphatidylcholine bilayer vesicles. Schroeder F, Barenholz Y, Gratton E, Thompson TE. Biochemistry; 1987 May 05; 26(9):2441-8. PubMed ID: 3607026 [Abstract] [Full Text] [Related]
15. Lipid headgroup superlattice modulates the activity of surface-acting cholesterol oxidase in ternary phospholipid/cholesterol bilayers. Cheng KH, Cannon B, Metze J, Lewis A, Huang J, Vaughn MW, Zhu Q, Somerharju P, Virtanen J. Biochemistry; 2006 Sep 12; 45(36):10855-64. PubMed ID: 16953571 [Abstract] [Full Text] [Related]
16. Cholesterol modulates the interaction of beta-amyloid peptide with lipid bilayers. Qiu L, Lewis A, Como J, Vaughn MW, Huang J, Somerharju P, Virtanen J, Cheng KH. Biophys J; 2009 May 20; 96(10):4299-307. PubMed ID: 19450500 [Abstract] [Full Text] [Related]
17. Morphology and dynamics of domains in ergosterol or cholesterol containing membranes. Galván-Hernández A, Kobayashi N, Hernández-Cobos J, Antillón A, Nakabayashi S, Ortega-Blake I. Biochim Biophys Acta Biomembr; 2020 Feb 01; 1862(2):183101. PubMed ID: 31672540 [Abstract] [Full Text] [Related]
19. Cyclodextrin-catalyzed extraction of fluorescent sterols from monolayer membranes and small unilamellar vesicles. Ohvo-Rekilä H, Akerlund B, Slotte JP. Chem Phys Lipids; 2000 Apr 01; 105(2):167-78. PubMed ID: 10823464 [Abstract] [Full Text] [Related]
20. Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function. Wang J, Megha, London E. Biochemistry; 2004 Feb 03; 43(4):1010-8. PubMed ID: 14744146 [Abstract] [Full Text] [Related] Page: [Next] [New Search]