These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Nucleotide specificity for the bidirectional transport of membrane-bounded organelles in isolated axoplasm. Leopold PL, Snyder R, Bloom GS, Brady ST. Cell Motil Cytoskeleton; 1990; 15(4):210-9. PubMed ID: 1692515 [Abstract] [Full Text] [Related]
6. Gelsolin inhibition of fast axonal transport indicates a requirement for actin microfilaments. Brady ST, Lasek RJ, Allen RD, Yin HL, Stossel TP. Nature; 1990; 310(5972):56-8. PubMed ID: 6204208 [Abstract] [Full Text] [Related]
7. Dynamic instability and motile events of native microtubules from squid axoplasm. Weiss DG, Langford GM, Seitz-Tutter D, Keller F. Cell Motil Cytoskeleton; 1988; 10(1-2):285-95. PubMed ID: 3180248 [Abstract] [Full Text] [Related]
8. Phosphorylation-dependent inhibition by synapsin I of organelle movement in squid axoplasm. McGuinness TL, Brady ST, Gruner JA, Sugimori M, Llinas R, Greengard P. J Neurosci; 1989 Dec; 9(12):4138-49. PubMed ID: 2512374 [Abstract] [Full Text] [Related]
9. Actin-dependent anterograde movement of growth-cone-like structures along growing hippocampal axons: a novel form of axonal transport? Ruthel G, Banker G. Cell Motil Cytoskeleton; 1998 Dec; 40(2):160-73. PubMed ID: 9634213 [Abstract] [Full Text] [Related]
10. Microtubule- and actin filament-dependent motors are distributed on pollen tube mitochondria and contribute differently to their movement. Romagnoli S, Cai G, Faleri C, Yokota E, Shimmen T, Cresti M. Plant Cell Physiol; 2007 Feb; 48(2):345-61. PubMed ID: 17204488 [Abstract] [Full Text] [Related]
11. Transport of ER vesicles on actin filaments in neurons by myosin V. Tabb JS, Molyneaux BJ, Cohen DL, Kuznetsov SA, Langford GM. J Cell Sci; 1998 Nov; 111 ( Pt 21)():3221-34. PubMed ID: 9763516 [Abstract] [Full Text] [Related]
14. Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP. Lasek RJ, Brady ST. Nature; 1998 Nov; 316(6029):645-7. PubMed ID: 4033761 [Abstract] [Full Text] [Related]
15. Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Gurke S, Barroso JF, Hodneland E, Bukoreshtliev NV, Schlicker O, Gerdes HH. Exp Cell Res; 2008 Dec 10; 314(20):3669-83. PubMed ID: 18845141 [Abstract] [Full Text] [Related]
16. A new model of reticulopodial motility and shape: evidence for a microtubule-based motor and an actin skeleton. Travis JL, Bowser SS. Cell Motil Cytoskeleton; 1986 Dec 10; 6(1):2-14. PubMed ID: 3698107 [Abstract] [Full Text] [Related]
17. Cellular organelle transport and positioning by plasma streaming. Wanka F, Van Zoelen EJ. Cell Mol Biol Lett; 2003 Dec 10; 8(4):1035-45. PubMed ID: 14668926 [Abstract] [Full Text] [Related]
19. A unique tubulin antibody which disrupts particle movement in squid axoplasm. Johnston KM, Brady ST, van der Kooy D, Connolly JA. Cell Motil Cytoskeleton; 1987 Dec 10; 7(2):110-5. PubMed ID: 2438055 [Abstract] [Full Text] [Related]
20. Plus-end motors override minus-end motors during transport of squid axon vesicles on microtubules. Muresan V, Godek CP, Reese TS, Schnapp BJ. J Cell Biol; 1996 Oct 10; 135(2):383-97. PubMed ID: 8896596 [Abstract] [Full Text] [Related] Page: [Next] [New Search]