These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


440 related items for PubMed ID: 15702321

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Short-term effects of functional electrical stimulation on spinal excitatory and inhibitory reflexes in ankle extensor and flexor muscles.
    Thompson AK, Doran B, Stein RB.
    Exp Brain Res; 2006 Apr; 170(2):216-26. PubMed ID: 16317575
    [Abstract] [Full Text] [Related]

  • 5. Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials.
    Knash ME, Kido A, Gorassini M, Chan KM, Stein RB.
    Exp Brain Res; 2003 Dec; 153(3):366-77. PubMed ID: 14610631
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Changes of excitability in M1 induced by neuromuscular electrical stimulation differ between presence and absence of voluntary drive.
    Sugawara K, Tanabe S, Higashi T, Tsurumi T, Kasai T.
    Int J Rehabil Res; 2011 Jun; 34(2):100-9. PubMed ID: 21088609
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Time-dependent changes in motor cortical excitability by electrical stimulation combined with voluntary drive.
    Sugawara K, Yamaguchi T, Tanabe S, Suzuki T, Saito K, Higashi T.
    Neuroreport; 2014 Apr 16; 25(6):404-9. PubMed ID: 24356108
    [Abstract] [Full Text] [Related]

  • 12. Electrical stimulation of the common peroneal nerve and its effects on the relationship between corticomuscular coherence and motor control in healthy adults.
    Koseki T, Kudo D, Katagiri N, Nanba S, Nito M, Tanabe S, Yamaguchi T.
    BMC Neurosci; 2021 Oct 13; 22(1):61. PubMed ID: 34645385
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity.
    Morita H, Crone C, Christenhuis D, Petersen NT, Nielsen JB.
    Brain; 2001 Apr 13; 124(Pt 4):826-37. PubMed ID: 11287381
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Maximal force, voluntary activation and muscle soreness after eccentric damage to human elbow flexor muscles.
    Prasartwuth O, Taylor JL, Gandevia SC.
    J Physiol; 2005 Aug 15; 567(Pt 1):337-48. PubMed ID: 15946963
    [Abstract] [Full Text] [Related]

  • 18. Modulation of reciprocal inhibition between ankle extensors and flexors during walking in man.
    Petersen N, Morita H, Nielsen J.
    J Physiol; 1999 Oct 15; 520 Pt 2(Pt 2):605-19. PubMed ID: 10523426
    [Abstract] [Full Text] [Related]

  • 19. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN, Bowtell JL, Kossev AR.
    Exp Physiol; 2009 Jan 15; 94(1):103-16. PubMed ID: 18658234
    [Abstract] [Full Text] [Related]

  • 20. Facilitation of cortically evoked potentials with motor imagery during post-exercise depression of corticospinal excitability.
    Pitcher JB, Robertson AL, Clover EC, Jaberzadeh S.
    Exp Brain Res; 2005 Jan 15; 160(4):409-17. PubMed ID: 15502993
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.