These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


659 related items for PubMed ID: 15713486

  • 1. Structure of a trapped intermediate of calmodulin: calcium regulation of EF-hand proteins from a new perspective.
    Grabarek Z.
    J Mol Biol; 2005 Mar 11; 346(5):1351-66. PubMed ID: 15713486
    [Abstract] [Full Text] [Related]

  • 2. Structural determinants of Ca2+ exchange and affinity in the C terminal of cardiac troponin C.
    Wang S, George SE, Davis JP, Johnson JD.
    Biochemistry; 1998 Oct 13; 37(41):14539-44. PubMed ID: 9772182
    [Abstract] [Full Text] [Related]

  • 3. Ca2+ coordination to backbone carbonyl oxygen atoms in calmodulin and other EF-hand proteins: 15N chemical shifts as probes for monitoring individual-site Ca2+ coordination.
    Biekofsky RR, Martin SR, Browne JP, Bayley PM, Feeney J.
    Biochemistry; 1998 May 19; 37(20):7617-29. PubMed ID: 9585577
    [Abstract] [Full Text] [Related]

  • 4. Ca2+ binding and conformational changes in a calmodulin domain.
    Evenäs J, Malmendal A, Thulin E, Carlström G, Forsén S.
    Biochemistry; 1998 Sep 29; 37(39):13744-54. PubMed ID: 9753463
    [Abstract] [Full Text] [Related]

  • 5. The fourth EF-hand of calmodulin and its helix-loop-helix components: impact on calcium binding and enzyme activation.
    George SE, Su Z, Fan D, Wang S, Johnson JD.
    Biochemistry; 1996 Jun 25; 35(25):8307-13. PubMed ID: 8679587
    [Abstract] [Full Text] [Related]

  • 6. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs.
    Gifford JL, Walsh MP, Vogel HJ.
    Biochem J; 2007 Jul 15; 405(2):199-221. PubMed ID: 17590154
    [Abstract] [Full Text] [Related]

  • 7. NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state.
    Evenäs J, Thulin E, Malmendal A, Forsén S, Carlström G.
    Biochemistry; 1997 Mar 25; 36(12):3448-57. PubMed ID: 9131994
    [Abstract] [Full Text] [Related]

  • 8. Ca2+/Mg2+ exchange in parvalbumin and other EF-hand proteins. A theoretical study.
    Allouche D, Parello J, Sanejouand YH.
    J Mol Biol; 1999 Jan 15; 285(2):857-73. PubMed ID: 9878449
    [Abstract] [Full Text] [Related]

  • 9. Blocking the Ca2+-induced conformational transitions in calmodulin with disulfide bonds.
    Tan RY, Mabuchi Y, Grabarek Z.
    J Biol Chem; 1996 Mar 29; 271(13):7479-83. PubMed ID: 8631777
    [Abstract] [Full Text] [Related]

  • 10. Structural uncoupling between opposing domains of oxidized calmodulin underlies the enhanced binding affinity and inhibition of the plasma membrane Ca-ATPase.
    Chen B, Mayer MU, Squier TC.
    Biochemistry; 2005 Mar 29; 44(12):4737-47. PubMed ID: 15779900
    [Abstract] [Full Text] [Related]

  • 11. Differential binding of calmodulin domains to constitutive and inducible nitric oxide synthase enzymes.
    Spratt DE, Taiakina V, Palmer M, Guillemette JG.
    Biochemistry; 2007 Jul 17; 46(28):8288-300. PubMed ID: 17580957
    [Abstract] [Full Text] [Related]

  • 12. Probing site-specific calmodulin calcium and lanthanide affinity by grafting.
    Ye Y, Lee HW, Yang W, Shealy S, Yang JJ.
    J Am Chem Soc; 2005 Mar 23; 127(11):3743-50. PubMed ID: 15771508
    [Abstract] [Full Text] [Related]

  • 13. A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase.
    Osawa M, Tokumitsu H, Swindells MB, Kurihara H, Orita M, Shibanuma T, Furuya T, Ikura M.
    Nat Struct Biol; 1999 Sep 23; 6(9):819-24. PubMed ID: 10467092
    [Abstract] [Full Text] [Related]

  • 14. Helix A stabilization precedes amino-terminal lobe activation upon calcium binding to calmodulin.
    Chen B, Lowry DF, Mayer MU, Squier TC.
    Biochemistry; 2008 Sep 02; 47(35):9220-6. PubMed ID: 18690719
    [Abstract] [Full Text] [Related]

  • 15. The solution structures of mutant calbindin D9k's, as determined by NMR, show that the calcium-binding site can adopt different folds.
    Johansson C, Ullner M, Drakenberg T.
    Biochemistry; 1993 Aug 24; 32(33):8429-38. PubMed ID: 8357794
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Dynamic motion of helix A in the amino-terminal domain of calmodulin is stabilized upon calcium activation.
    Chen B, Mayer MU, Markillie LM, Stenoien DL, Squier TC.
    Biochemistry; 2005 Jan 25; 44(3):905-14. PubMed ID: 15654746
    [Abstract] [Full Text] [Related]

  • 20. Analysis of the functional coupling between calmodulin's calcium binding and peptide recognition properties.
    Mirzoeva S, Weigand S, Lukas TJ, Shuvalova L, Anderson WF, Watterson DM.
    Biochemistry; 1999 Mar 30; 38(13):3936-47. PubMed ID: 10194305
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.