These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 15714253

  • 1. Nefopam inhibits calcium influx, cGMP formation, and NMDA receptor-dependent neurotoxicity following activation of voltage sensitive calcium channels.
    Novelli A, Díaz-Trelles R, Groppetti A, Fernández-Sánchez MT.
    Amino Acids; 2005 Mar; 28(2):183-91. PubMed ID: 15714253
    [Abstract] [Full Text] [Related]

  • 2. Nefopam, an analogue of orphenadrine, protects against both NMDA receptor-dependent and independent veratridine-induced neurotoxicity.
    Fernández-Sánchez MT, Díaz-Trelles R, Groppetti A, Manfredi B, Brini AT, Biella G, Sotgiu ML, Novelli A.
    Amino Acids; 2002 Mar; 23(1-3):31-6. PubMed ID: 12373515
    [Abstract] [Full Text] [Related]

  • 3. Nefopam is more potent than carbamazepine for neuroprotection against veratridine in vitro and has anticonvulsant properties against both electrical and chemical stimulation.
    Novelli A, Groppetti A, Rossoni G, Manfredi B, Ferrero-Gutiérrez A, Pérez-Gómez A, Desogus CM, Fernández-Sánchez MT.
    Amino Acids; 2007 Mar; 32(3):323-32. PubMed ID: 17021653
    [Abstract] [Full Text] [Related]

  • 4. Nefopam blocks voltage-sensitive sodium channels and modulates glutamatergic transmission in rodents.
    Verleye M, André N, Heulard I, Gillardin JM.
    Brain Res; 2004 Jul 09; 1013(2):249-55. PubMed ID: 15193535
    [Abstract] [Full Text] [Related]

  • 5. Novel effect of nefopam preventing cGMP increase, oxygen radical formation and neuronal death induced by veratridine.
    Fernández-Sánchez MT, Díaz-Trelles R, Groppetti A, Manfredi B, Brini AT, Biella G, Sotgiu ML, Novelli A.
    Neuropharmacology; 2001 Dec 09; 41(8):935-42. PubMed ID: 11747898
    [Abstract] [Full Text] [Related]

  • 6. Calcium influx through N-methyl-D-aspartate receptors triggers GABA release at interneuron-Purkinje cell synapse in rat cerebellum.
    Glitsch MD.
    Neuroscience; 2008 Jan 24; 151(2):403-9. PubMed ID: 18055124
    [Abstract] [Full Text] [Related]

  • 7. Complex influence of the L-type calcium-channel agonist BayK8644(+/-) on N-methyl-D-aspartate responses and neuronal survival.
    Barger SW.
    Neuroscience; 1999 Mar 24; 89(1):101-8. PubMed ID: 10051220
    [Abstract] [Full Text] [Related]

  • 8. Sodium nitroprusside inhibits N-methyl-D-aspartate-evoked calcium influx via a nitric oxide- and cGMP-independent mechanism.
    Kiedrowski L, Costa E, Wroblewski JT.
    Mol Pharmacol; 1992 Apr 24; 41(4):779-84. PubMed ID: 1314946
    [Abstract] [Full Text] [Related]

  • 9. L-type calcium channels and NMDA receptors: a determinant duo for short-term nociceptive plasticity.
    Fossat P, Sibon I, Le Masson G, Landry M, Nagy F.
    Eur J Neurosci; 2007 Jan 24; 25(1):127-35. PubMed ID: 17241274
    [Abstract] [Full Text] [Related]

  • 10. Blocking L-type calcium channels enhances long-term depression induced by low-frequency stimulation at hippocampal CA1 synapses.
    Udagawa R, Nakano M, Kato N.
    Brain Res; 2006 Dec 08; 1124(1):28-36. PubMed ID: 17084819
    [Abstract] [Full Text] [Related]

  • 11. Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution.
    Abulrob A, Tauskela JS, Mealing G, Brunette E, Faid K, Stanimirovic D.
    J Neurochem; 2005 Mar 08; 92(6):1477-86. PubMed ID: 15748165
    [Abstract] [Full Text] [Related]

  • 12. Synapse-to-synapse variation of calcium channel subtype contributions in large mossy fiber terminals of mouse hippocampus.
    Miyazaki K, Ishizuka T, Yawo H.
    Neuroscience; 2005 Mar 08; 136(4):1003-14. PubMed ID: 16226383
    [Abstract] [Full Text] [Related]

  • 13. Domoic acid neurotoxicity in cultured cerebellar granule neurons is controlled preferentially by the NMDA receptor Ca(2+) influx pathway.
    Berman FW, LePage KT, Murray TF.
    Brain Res; 2002 Jan 04; 924(1):20-9. PubMed ID: 11743991
    [Abstract] [Full Text] [Related]

  • 14. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones.
    MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL.
    Nature; 2002 Jan 04; 321(6069):519-22. PubMed ID: 3012362
    [Abstract] [Full Text] [Related]

  • 15. The excitoprotective effect of N-methyl-D-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons.
    Jiang X, Tian F, Mearow K, Okagaki P, Lipsky RH, Marini AM.
    J Neurochem; 2005 Aug 04; 94(3):713-22. PubMed ID: 16000165
    [Abstract] [Full Text] [Related]

  • 16. Possible protection by notoginsenoside R1 against glutamate neurotoxicity mediated by N-methyl-D-aspartate receptors composed of an NR1/NR2B subunit assembly.
    Gu B, Nakamichi N, Zhang WS, Nakamura Y, Kambe Y, Fukumori R, Takuma K, Yamada K, Takarada T, Taniura H, Yoneda Y.
    J Neurosci Res; 2009 Jul 04; 87(9):2145-56. PubMed ID: 19224577
    [Abstract] [Full Text] [Related]

  • 17. Alpha2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity.
    Dong CJ, Guo Y, Agey P, Wheeler L, Hare WA.
    Invest Ophthalmol Vis Sci; 2008 Oct 04; 49(10):4515-22. PubMed ID: 18566471
    [Abstract] [Full Text] [Related]

  • 18. Contribution of transient receptor potential vanilloid subtype 1 to the analgesic and antihyperalgesic activity of nefopam in rodents.
    Verleye M, Gillardin JM.
    Pharmacology; 2009 Oct 04; 83(2):116-21. PubMed ID: 19096234
    [Abstract] [Full Text] [Related]

  • 19. GMP prevents excitotoxicity mediated by NMDA receptor activation but not by reversal activity of glutamate transporters in rat hippocampal slices.
    Molz S, Tharine DC, Decker H, Tasca CI.
    Brain Res; 2008 Sep 22; 1231():113-20. PubMed ID: 18655777
    [Abstract] [Full Text] [Related]

  • 20. Cortisol rapidly suppresses intracellular calcium and voltage-gated calcium channel activity in prolactin cells of the tilapia (Oreochromis mossambicus).
    Hyde GN, Seale AP, Grau EG, Borski RJ.
    Am J Physiol Endocrinol Metab; 2004 Apr 22; 286(4):E626-33. PubMed ID: 14656715
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.