These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 15725015
1. Flexible docking in solution using metadynamics. Gervasio FL, Laio A, Parrinello M. J Am Chem Soc; 2005 Mar 02; 127(8):2600-7. PubMed ID: 15725015 [Abstract] [Full Text] [Related]
2. Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. Morris GM, Goodsell DS, Huey R, Olson AJ. J Comput Aided Mol Des; 1996 Aug 02; 10(4):293-304. PubMed ID: 8877701 [Abstract] [Full Text] [Related]
3. Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential. Jiao D, Zhang J, Duke RE, Li G, Schnieders MJ, Ren P. J Comput Chem; 2009 Aug 02; 30(11):1701-11. PubMed ID: 19399779 [Abstract] [Full Text] [Related]
4. Receptor rigidity and ligand mobility in trypsin-ligand complexes. Guvench O, Price DJ, Brooks CL. Proteins; 2005 Feb 01; 58(2):407-17. PubMed ID: 15578663 [Abstract] [Full Text] [Related]
5. Unveiling the full potential of flexible receptor docking using multiple crystallographic structures. Barril X, Morley SD. J Med Chem; 2005 Jun 30; 48(13):4432-43. PubMed ID: 15974595 [Abstract] [Full Text] [Related]
6. Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation. Mangoni M, Roccatano D, Di Nola A. Proteins; 1999 May 01; 35(2):153-62. PubMed ID: 10223288 [Abstract] [Full Text] [Related]
7. Exploring the Ligand Binding/Unbinding Pathway by Selectively Enhanced Sampling of Ligand in a Protein-Ligand Complex. Shao Q, Zhu W. J Phys Chem B; 2019 Sep 26; 123(38):7974-7983. PubMed ID: 31478672 [Abstract] [Full Text] [Related]
9. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Buch I, Giorgino T, De Fabritiis G. Proc Natl Acad Sci U S A; 2011 Jun 21; 108(25):10184-9. PubMed ID: 21646537 [Abstract] [Full Text] [Related]
13. Protein flexibility in ligand docking and virtual screening to protein kinases. Cavasotto CN, Abagyan RA. J Mol Biol; 2004 Mar 12; 337(1):209-25. PubMed ID: 15001363 [Abstract] [Full Text] [Related]
14. Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models. Plattner N, Noé F. Nat Commun; 2015 Jul 02; 6():7653. PubMed ID: 26134632 [Abstract] [Full Text] [Related]
16. SEEKR: Simulation Enabled Estimation of Kinetic Rates, A Computational Tool to Estimate Molecular Kinetics and Its Application to Trypsin-Benzamidine Binding. Votapka LW, Jagger BR, Heyneman AL, Amaro RE. J Phys Chem B; 2017 Apr 20; 121(15):3597-3606. PubMed ID: 28191969 [Abstract] [Full Text] [Related]
17. Electrostatic effects play a central role in cold adaptation of trypsin. Brandsdal BO, Smalås AO, Aqvist J. FEBS Lett; 2001 Jun 15; 499(1-2):171-5. PubMed ID: 11418134 [Abstract] [Full Text] [Related]
18. Gaussian docking functions. McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK. Biopolymers; 2003 Jan 15; 68(1):76-90. PubMed ID: 12579581 [Abstract] [Full Text] [Related]
19. Trypsin-ligand binding free energy calculation with AMOEBA. Shi Y, Jiao D, Schnieders MJ, Ren P. Annu Int Conf IEEE Eng Med Biol Soc; 2009 Jan 15; 2009():2328-31. PubMed ID: 19965178 [Abstract] [Full Text] [Related]
20. Comparative molecular modeling analysis of-5-amidinoindole and benzamidine binding to thrombin and trypsin: specific H-bond formation contributes to high 5-amidinoindole potency and selectivity for thrombin and factor Xa. Zhou Y, Johnson ME. J Mol Recognit; 1999 Jan 15; 12(4):235-41. PubMed ID: 10440994 [Abstract] [Full Text] [Related] Page: [Next] [New Search]