These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
131 related items for PubMed ID: 15728580
1. Vanishingly low levels of Ess1 prolyl-isomerase activity are sufficient for growth in Saccharomyces cerevisiae. Gemmill TR, Wu X, Hanes SD. J Biol Chem; 2005 Apr 22; 280(16):15510-7. PubMed ID: 15728580 [Abstract] [Full Text] [Related]
2. The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. Hanes SD. Biochim Biophys Acta; 2014 Apr 22; 1839(4):316-33. PubMed ID: 24530645 [Abstract] [Full Text] [Related]
3. Multiple roles for the Ess1 prolyl isomerase in the RNA polymerase II transcription cycle. Ma Z, Atencio D, Barnes C, DeFiglio H, Hanes SD. Mol Cell Biol; 2012 Sep 22; 32(17):3594-607. PubMed ID: 22778132 [Abstract] [Full Text] [Related]
4. The ESS1 prolyl isomerase and its suppressor BYE1 interact with RNA pol II to inhibit transcription elongation in Saccharomyces cerevisiae. Wu X, Rossettini A, Hanes SD. Genetics; 2003 Dec 22; 165(4):1687-702. PubMed ID: 14704159 [Abstract] [Full Text] [Related]
5. Genetic interactions with C-terminal domain (CTD) kinases and the CTD of RNA Pol II suggest a role for ESS1 in transcription initiation and elongation in Saccharomyces cerevisiae. Wilcox CB, Rossettini A, Hanes SD. Genetics; 2004 May 22; 167(1):93-105. PubMed ID: 15166139 [Abstract] [Full Text] [Related]
6. Genetic interactions between the ESS1 prolyl-isomerase and the RSP5 ubiquitin ligase reveal opposing effects on RNA polymerase II function. Wu X, Chang A, Sudol M, Hanes SD. Curr Genet; 2001 Dec 22; 40(4):234-42. PubMed ID: 11795843 [Abstract] [Full Text] [Related]
7. The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. Wu X, Wilcox CB, Devasahayam G, Hackett RL, Arévalo-Rodríguez M, Cardenas ME, Heitman J, Hanes SD. EMBO J; 2000 Jul 17; 19(14):3727-38. PubMed ID: 10899126 [Abstract] [Full Text] [Related]
8. Phosphorylation of RNA polymerase II CTD fragments results in tight binding to the WW domain from the yeast prolyl isomerase Ess1. Myers JK, Morris DP, Greenleaf AL, Oas TG. Biochemistry; 2001 Jul 24; 40(29):8479-86. PubMed ID: 11456485 [Abstract] [Full Text] [Related]
9. The yeast Ess1 prolyl isomerase controls Swi6 and Whi5 nuclear localization. Atencio D, Barnes C, Duncan TM, Willis IM, Hanes SD. G3 (Bethesda); 2014 Mar 20; 4(3):523-37. PubMed ID: 24470217 [Abstract] [Full Text] [Related]
10. Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries. Krishnamurthy S, Ghazy MA, Moore C, Hampsey M. Mol Cell Biol; 2009 Jun 20; 29(11):2925-34. PubMed ID: 19332564 [Abstract] [Full Text] [Related]
11. The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway. Singh N, Ma Z, Gemmill T, Wu X, Defiglio H, Rossettini A, Rabeler C, Beane O, Morse RH, Palumbo MJ, Hanes SD. Mol Cell; 2009 Oct 23; 36(2):255-66. PubMed ID: 19854134 [Abstract] [Full Text] [Related]
12. Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-End formation. Morris DP, Phatnani HP, Greenleaf AL. J Biol Chem; 1999 Oct 29; 274(44):31583-7. PubMed ID: 10531363 [Abstract] [Full Text] [Related]
13. Structure analysis suggests Ess1 isomerizes the carboxy-terminal domain of RNA polymerase II via a bivalent anchoring mechanism. Namitz KEW, Zheng T, Canning AJ, Alicea-Velazquez NL, Castañeda CA, Cosgrove MS, Hanes SD. Commun Biol; 2021 Mar 25; 4(1):398. PubMed ID: 33767358 [Abstract] [Full Text] [Related]
14. The structure of the Candida albicans Ess1 prolyl isomerase reveals a well-ordered linker that restricts domain mobility. Li Z, Li H, Devasahayam G, Gemmill T, Chaturvedi V, Hanes SD, Van Roey P. Biochemistry; 2005 Apr 26; 44(16):6180-9. PubMed ID: 15835905 [Abstract] [Full Text] [Related]
15. Crosstalk of prolyl isomerases, Pin1/Ess1, and cyclophilin A. Fujimori F, Gunji W, Kikuchi J, Mogi T, Ohashi Y, Makino T, Oyama A, Okuhara K, Uchida T, Murakami Y. Biochem Biophys Res Commun; 2001 Nov 23; 289(1):181-90. PubMed ID: 11708797 [Abstract] [Full Text] [Related]
16. Functional conservation of phosphorylation-specific prolyl isomerases in plants. Yao JL, Kops O, Lu PJ, Lu KP. J Biol Chem; 2001 Apr 27; 276(17):13517-23. PubMed ID: 11118438 [Abstract] [Full Text] [Related]
17. Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. Arévalo-Rodríguez M, Cardenas ME, Wu X, Hanes SD, Heitman J. EMBO J; 2000 Jul 17; 19(14):3739-49. PubMed ID: 10899127 [Abstract] [Full Text] [Related]
18. The Ess1 prolyl isomerase is dispensable for growth but required for virulence in Cryptococcus neoformans. Ren P, Rossettini A, Chaturvedi V, Hanes SD. Microbiology (Reading); 2005 May 17; 151(Pt 5):1593-1605. PubMed ID: 15870468 [Abstract] [Full Text] [Related]
19. Functional replacement of the essential ESS1 in yeast by the plant parvulin DlPar13. Metzner M, Stoller G, Rücknagel KP, Lu KP, Fischer G, Luckner M, Küllertz G. J Biol Chem; 2001 Apr 27; 276(17):13524-9. PubMed ID: 11118437 [Abstract] [Full Text] [Related]
20. Pin1 modulates the dephosphorylation of the RNA polymerase II C-terminal domain by yeast Fcp1. Kops O, Zhou XZ, Lu KP. FEBS Lett; 2002 Feb 27; 513(2-3):305-11. PubMed ID: 11904169 [Abstract] [Full Text] [Related] Page: [Next] [New Search]