These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 15730883

  • 1. Ultraviolet- and short-wavelength cone contributions alter the early components of the ERG of young zebrafish.
    Bilotta J, Trace SE, Vukmanic EV, Risner ML.
    Int J Dev Neurosci; 2005 Feb; 23(1):15-25. PubMed ID: 15730883
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The d-wave of the rod electroretinogram of rat originates in the cone pathway.
    Naarendorp F, Williams GE.
    Vis Neurosci; 1999 Feb; 16(1):91-105. PubMed ID: 10022481
    [Abstract] [Full Text] [Related]

  • 4. A spectral model for signal elements isolated from zebrafish photopic electroretinogram.
    Nelson RF, Singla N.
    Vis Neurosci; 2009 Feb; 26(4):349-63. PubMed ID: 19723365
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Retinal pathway origins of the pattern ERG of the mouse.
    Miura G, Wang MH, Ivers KM, Frishman LJ.
    Exp Eye Res; 2009 Jun 15; 89(1):49-62. PubMed ID: 19250935
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Two distinct processes are evident in rat cone flicker ERG responses at low and high temporal frequencies.
    Qian H, Shah MR, Alexander KR, Ripps H.
    Exp Eye Res; 2008 Jul 15; 87(1):71-5. PubMed ID: 18555992
    [Abstract] [Full Text] [Related]

  • 10. Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques. Macaque photopic sinusoidal flicker ERG.
    Viswanathan S, Frishman LJ, Robson JG.
    Doc Ophthalmol; 2002 Sep 15; 105(2):223-42. PubMed ID: 12462445
    [Abstract] [Full Text] [Related]

  • 11. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave.
    Sieving PA, Murayama K, Naarendorp F.
    Vis Neurosci; 1994 Sep 15; 11(3):519-32. PubMed ID: 8038126
    [Abstract] [Full Text] [Related]

  • 12. Characterization of the rod photoresponse isolated from the dark-adapted primate ERG.
    Jamison JA, Bush RA, Lei B, Sieving PA.
    Vis Neurosci; 2001 Sep 15; 18(3):445-55. PubMed ID: 11497421
    [Abstract] [Full Text] [Related]

  • 13. Post-photoreceptoral activity dominates primate photopic 32-Hz ERG for sine-, square-, and pulsed stimuli.
    Kondo M, Sieving PA.
    Invest Ophthalmol Vis Sci; 2002 Jul 15; 43(7):2500-7. PubMed ID: 12091456
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs.
    Kondo M, Sieving PA.
    Invest Ophthalmol Vis Sci; 2001 Jan 15; 42(1):305-12. PubMed ID: 11133883
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Inner retinal contributions to the primate photopic fast flicker electroretinogram.
    Bush RA, Sieving PA.
    J Opt Soc Am A Opt Image Sci Vis; 1996 Mar 15; 13(3):557-65. PubMed ID: 8627412
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.