These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1061 related items for PubMed ID: 15731329

  • 1. Simple and highly efficient BAC recombineering using galK selection.
    Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG.
    Nucleic Acids Res; 2005 Feb 24; 33(4):e36. PubMed ID: 15731329
    [Abstract] [Full Text] [Related]

  • 2. [Development of a new recombineering system by gap repair].
    Li SH, Hong X, Yu M, Chen W, Huang CF, Zhou JG.
    Yi Chuan Xue Bao; 2005 May 24; 32(5):533-7. PubMed ID: 16018266
    [Abstract] [Full Text] [Related]

  • 3. Development of a bacterial artificial chromosome (BAC) recombineering procedure using galK-untranslated region (UTR) for the mutation of diploid genes.
    Dai G, Kim S, O'Callaghan DJ, Kim SK.
    J Virol Methods; 2012 Jun 24; 182(1-2):18-26. PubMed ID: 22407056
    [Abstract] [Full Text] [Related]

  • 4. Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli.
    Wong QN, Ng VC, Lin MC, Kung HF, Chan D, Huang JD.
    Nucleic Acids Res; 2005 Mar 30; 33(6):e59. PubMed ID: 15800210
    [Abstract] [Full Text] [Related]

  • 5. Using recombineering to generate point mutations:galK-based positive-negative selection method.
    Biswas K, Stauffer S, Sharan SK.
    Methods Mol Biol; 2012 Mar 30; 852():121-31. PubMed ID: 22328430
    [Abstract] [Full Text] [Related]

  • 6. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles.
    Testa G, Zhang Y, Vintersten K, Benes V, Pijnappel WW, Chambers I, Smith AJ, Smith AG, Stewart AF.
    Nat Biotechnol; 2003 Apr 30; 21(4):443-7. PubMed ID: 12627172
    [Abstract] [Full Text] [Related]

  • 7. A new positive/negative selection scheme for precise BAC recombineering.
    Wang S, Zhao Y, Leiby M, Zhu J.
    Mol Biotechnol; 2009 May 30; 42(1):110-6. PubMed ID: 19160076
    [Abstract] [Full Text] [Related]

  • 8. Construction and functional characterization of an integrative form lambda Red recombineering Escherichia coli strain.
    Song J, Dong H, Ma C, Zhao B, Shang G.
    FEMS Microbiol Lett; 2010 Aug 01; 309(2):178-83. PubMed ID: 20618864
    [Abstract] [Full Text] [Related]

  • 9. BAC-recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits.
    Bitrián M, Roodbarkelari F, Horváth M, Koncz C.
    Plant J; 2011 Mar 01; 65(5):829-42. PubMed ID: 21235649
    [Abstract] [Full Text] [Related]

  • 10. Modifying bacteriophage lambda with recombineering.
    Thomason LC, Oppenheim AB, Court DL.
    Methods Mol Biol; 2009 Mar 01; 501():239-51. PubMed ID: 19066825
    [Abstract] [Full Text] [Related]

  • 11. [Recombineering and its application].
    Zhou JG, Hong X, Huang CF.
    Yi Chuan Xue Bao; 2003 Oct 01; 30(10):983-8. PubMed ID: 14669518
    [Abstract] [Full Text] [Related]

  • 12. Cloning and characterization of the galactokinase gene from Streptococcus thermophilus.
    Mustapha A, Hutkins RW, Zirnstein GW.
    J Dairy Sci; 1995 May 01; 78(5):989-97. PubMed ID: 7622733
    [Abstract] [Full Text] [Related]

  • 13. Construction of human artificial chromosome vectors by recombineering.
    Kotzamanis G, Cheung W, Abdulrazzak H, Perez-Luz S, Howe S, Cooke H, Huxley C.
    Gene; 2005 May 23; 351():29-38. PubMed ID: 15837432
    [Abstract] [Full Text] [Related]

  • 14. A highly efficient recombineering-based method for generating conditional knockout mutations.
    Liu P, Jenkins NA, Copeland NG.
    Genome Res; 2003 Mar 23; 13(3):476-84. PubMed ID: 12618378
    [Abstract] [Full Text] [Related]

  • 15. Efficient and precise engineering of a 200 kb beta-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system.
    Narayanan K, Williamson R, Zhang Y, Stewart AF, Ioannou PA.
    Gene Ther; 1999 Mar 23; 6(3):442-7. PubMed ID: 10435094
    [Abstract] [Full Text] [Related]

  • 16. oHSV Genome Editing by Means of galK Recombineering.
    Menotti L, Leoni V, Gatta V, Petrovic B, Vannini A, Pepe S, Gianni T, Campadelli-Fiume G.
    Methods Mol Biol; 2020 Mar 23; 2060():131-151. PubMed ID: 31617176
    [Abstract] [Full Text] [Related]

  • 17. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA.
    Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG.
    Genomics; 2001 Apr 01; 73(1):56-65. PubMed ID: 11352566
    [Abstract] [Full Text] [Related]

  • 18. Mini-lambda: a tractable system for chromosome and BAC engineering.
    Court DL, Swaminathan S, Yu D, Wilson H, Baker T, Bubunenko M, Sawitzke J, Sharan SK.
    Gene; 2003 Oct 02; 315():63-9. PubMed ID: 14557065
    [Abstract] [Full Text] [Related]

  • 19. Structure of the galactokinase gene of Escherichia coli, the last (?) gene of the gal operon.
    Debouck C, Riccio A, Schumperli D, McKenney K, Jeffers J, Hughes C, Rosenberg M, Heusterspreute M, Brunel F, Davison J.
    Nucleic Acids Res; 1985 Mar 25; 13(6):1841-53. PubMed ID: 3158881
    [Abstract] [Full Text] [Related]

  • 20. Developing live Shigella vaccines using lambda Red recombineering.
    Ranallo RT, Barnoy S, Thakkar S, Urick T, Venkatesan MM.
    FEMS Immunol Med Microbiol; 2006 Aug 25; 47(3):462-9. PubMed ID: 16872384
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 54.