These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
214 related items for PubMed ID: 15732379
1. Programming cochlear implant stimulation levels in infants and children with a combination of objective measures. Gordon K, Papsin BC, Harrison RV. Int J Audiol; 2004 Dec; 43 Suppl 1():S28-32. PubMed ID: 15732379 [Abstract] [Full Text] [Related]
2. Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children. Gordon KA, Papsin BC, Harrison RV. Ear Hear; 2004 Oct; 25(5):447-63. PubMed ID: 15599192 [Abstract] [Full Text] [Related]
3. Evolution of cochlear implant arrays result in changes in behavioral and physiological responses in children. Gordin A, Papsin B, James A, Gordon K. Otol Neurotol; 2009 Oct; 30(7):908-15. PubMed ID: 19730148 [Abstract] [Full Text] [Related]
4. Evoked stapedius reflex and compound action potential thresholds versus most comfortable loudness level: assessment of their relation for charge-based fitting strategies in implant users. Walkowiak A, Lorens A, Polak M, Kostek B, Skarzynski H, Szkielkowska A, Skarzynski PH. ORL J Otorhinolaryngol Relat Spec; 2011 Oct; 73(4):189-95. PubMed ID: 21659787 [Abstract] [Full Text] [Related]
5. Using evoked compound action potentials to assess activation of electrodes and predict C-levels in the Tempo+ cochlear implant speech processor. Alvarez I, de la Torre A, Sainz M, Roldán C, Schoesser H, Spitzer P. Ear Hear; 2010 Feb; 31(1):134-45. PubMed ID: 19838116 [Abstract] [Full Text] [Related]
6. Optimizing fitting in children using objective measures such as neural response imaging and electrically evoked stapedius reflex threshold. Caner G, Olgun L, Gültekin G, Balaban M. Otol Neurotol; 2007 Aug; 28(5):637-40. PubMed ID: 17667772 [Abstract] [Full Text] [Related]
7. [Electrically evoked auditory nerve compound action potentials in Nucleus CI24M cochlear implant users]. Zhu X, Cao K, Pan T, Yang H, Wang Y. Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2002 Jan; 16(1):5-8. PubMed ID: 11944479 [Abstract] [Full Text] [Related]
8. Modeling the relationship between psychophysical perception and electrically evoked compound action potential threshold in young cochlear implant recipients: clinical implications for implant fitting. Thai-Van H, Truy E, Charasse B, Boutitie F, Chanal JM, Cochard N, Piron JP, Ribas S, Deguine O, Fraysse B, Mondain M, Uziel A, Collet L. Clin Neurophysiol; 2004 Dec; 115(12):2811-24. PubMed ID: 15546789 [Abstract] [Full Text] [Related]
9. Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants. Gordon KA, Papsin BC, Harrison RV. Ear Hear; 2003 Dec; 24(6):485-500. PubMed ID: 14663348 [Abstract] [Full Text] [Related]
10. Packing of the cochleostomy site affects auditory nerve response thresholds in precurved off-stylet cochlear implants. Gordin A, Papsin B, Gordon K. Otol Neurotol; 2010 Feb; 31(2):204-9. PubMed ID: 20101160 [Abstract] [Full Text] [Related]
11. Toward a method for programming balanced bilateral cochlear implant stimulation levels in children. Gordon KA, Chaikof MH, Salloum C, Goulding G, Papsin B. Cochlear Implants Int; 2012 Nov; 13(4):220-7. PubMed ID: 22325057 [Abstract] [Full Text] [Related]
12. Comparisons between neural response imaging thresholds, electrically evoked auditory reflex thresholds and most comfortable loudness levels in CII bionic ear users with HiResolution sound processing strategies. Han DM, Chen XQ, Zhao XT, Kong Y, Li YX, Liu S, Liu B, Mo LY. Acta Otolaryngol; 2005 Jul; 125(7):732-5. PubMed ID: 16012035 [Abstract] [Full Text] [Related]
13. Evaluation of a novel, noninvasive, objective test of auditory nerve function in cochlear implant candidates. Gräbel S, Hirschfelder A, Scheiber C, Olze H. Otol Neurotol; 2009 Sep; 30(6):716-24. PubMed ID: 19704358 [Abstract] [Full Text] [Related]
14. AutoNR: an automated system that measures ECAP thresholds with the Nucleus Freedom cochlear implant via machine intelligence. Botros A, van Dijk B, Killian M. Artif Intell Med; 2007 May; 40(1):15-28. PubMed ID: 16920343 [Abstract] [Full Text] [Related]
15. The relationship between the intraoperative ECAP threshold and postoperative behavioral levels: the difference between postlingually deafened adults and prelingually deafened pediatric cochlear implant users. Morita T, Naito Y, Hirai T, Yamaguchi S, Ito J. Eur Arch Otorhinolaryngol; 2003 Feb; 260(2):67-72. PubMed ID: 12582781 [Abstract] [Full Text] [Related]
16. Electrophysiologic and objective monitoring of the cochlear implant during surgery: implementation, audit and outcomes. Mason S. Int J Audiol; 2004 Dec; 43 Suppl 1():S33-8. PubMed ID: 15732380 [Abstract] [Full Text] [Related]
18. Differences between electrically evoked compound action potential (ECAP) and behavioral measures in children with cochlear implants operated in the school age vs. operated in the first years of life. Vlahović S, Šindija B, Aras I, Glunčić M, Trotić R. Int J Pediatr Otorhinolaryngol; 2012 May; 76(5):731-9. PubMed ID: 22398117 [Abstract] [Full Text] [Related]
19. Dose-dependent suppression of the electrically elicited stapedius reflex by general anesthetics in children undergoing cochlear implant surgery. Crawford MW, White MC, Propst EJ, Zaarour C, Cushing S, Pehora C, James AL, Gordon KA, Papsin BC. Anesth Analg; 2009 May; 108(5):1480-7. PubMed ID: 19372325 [Abstract] [Full Text] [Related]
20. [The intraoperative application of neural response telemetry with the nucleus CI24M cochlear implant]. Yang H, Tang J, Cao K, Zhu X, Wang Y, Pan T. Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Oct; 36(5):352-6. PubMed ID: 12761943 [Abstract] [Full Text] [Related] Page: [Next] [New Search]