These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


348 related items for PubMed ID: 15734839

  • 1. Differential utilization of saturated palmitate and unsaturated oleate: evidence from cultured myotubes.
    Gaster M, Rustan AC, Beck-Nielsen H.
    Diabetes; 2005 Mar; 54(3):648-56. PubMed ID: 15734839
    [Abstract] [Full Text] [Related]

  • 2. Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes.
    Gaster M, Rustan AC, Aas V, Beck-Nielsen H.
    Diabetes; 2004 Mar; 53(3):542-8. PubMed ID: 14988236
    [Abstract] [Full Text] [Related]

  • 3. Fatty acid incubation of myotubes from humans with type 2 diabetes leads to enhanced release of beta-oxidation products because of impaired fatty acid oxidation: effects of tetradecylthioacetic acid and eicosapentaenoic acid.
    Wensaas AJ, Rustan AC, Just M, Berge RK, Drevon CA, Gaster M.
    Diabetes; 2009 Mar; 58(3):527-35. PubMed ID: 19066312
    [Abstract] [Full Text] [Related]

  • 4. Triacylglycerol accumulation is not primarily affected in myotubes established from type 2 diabetic subjects.
    Gaster M, Beck-Nielsen H.
    Biochim Biophys Acta; 2006 Jan; 1761(1):100-10. PubMed ID: 16442843
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Increased triacylglycerol - Fatty acid substrate cycling in human skeletal muscle cells exposed to eicosapentaenoic acid.
    Løvsletten NG, Bakke SS, Kase ET, Ouwens DM, Thoresen GH, Rustan AC.
    PLoS One; 2018 Jan; 13(11):e0208048. PubMed ID: 30496314
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Eicosapentaenoic acid (20:5 n-3) increases fatty acid and glucose uptake in cultured human skeletal muscle cells.
    Aas V, Rokling-Andersen MH, Kase ET, Thoresen GH, Rustan AC.
    J Lipid Res; 2006 Feb; 47(2):366-74. PubMed ID: 16301737
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites.
    Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, Sinclair AJ, Febbraio MA, Watt MJ.
    J Appl Physiol (1985); 2006 May; 100(5):1467-74. PubMed ID: 16357064
    [Abstract] [Full Text] [Related]

  • 14. Regulation of skeletal muscle sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase (SNARK) by metabolic stress and diabetes.
    Rune A, Osler ME, Fritz T, Zierath JR.
    Diabetologia; 2009 Oct; 52(10):2182-9. PubMed ID: 19652946
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells.
    Hirabara SM, Curi R, Maechler P.
    J Cell Physiol; 2010 Jan; 222(1):187-94. PubMed ID: 19780047
    [Abstract] [Full Text] [Related]

  • 17. Palmitic acid follows a different metabolic pathway than oleic acid in human skeletal muscle cells; lower lipolysis rate despite an increased level of adipose triglyceride lipase.
    Bakke SS, Moro C, Nikolić N, Hessvik NP, Badin PM, Lauvhaug L, Fredriksson K, Hesselink MK, Boekschoten MV, Kersten S, Gaster M, Thoresen GH, Rustan AC.
    Biochim Biophys Acta; 2012 Oct; 1821(10):1323-33. PubMed ID: 22796147
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Fatty acid-induced defects in insulin signalling, in myotubes derived from children, are related to ceramide production from palmitate rather than the accumulation of intramyocellular lipid.
    Sabin MA, Stewart CE, Crowne EC, Turner SJ, Hunt LP, Welsh GI, Grohmann MJ, Holly JM, Shield JP.
    J Cell Physiol; 2007 Apr; 211(1):244-52. PubMed ID: 17219404
    [Abstract] [Full Text] [Related]

  • 20. Chronic hyperglycemia reduces substrate oxidation and impairs metabolic switching of human myotubes.
    Aas V, Hessvik NP, Wettergreen M, Hvammen AW, Hallén S, Thoresen GH, Rustan AC.
    Biochim Biophys Acta; 2011 Jan; 1812(1):94-105. PubMed ID: 20888904
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.