These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


632 related items for PubMed ID: 15734909

  • 1. The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots.
    Gierth M, Mäser P, Schroeder JI.
    Plant Physiol; 2005 Mar; 137(3):1105-14. PubMed ID: 15734909
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations.
    Rubio F, Nieves-Cordones M, Alemán F, Martínez V.
    Physiol Plant; 2008 Dec; 134(4):598-608. PubMed ID: 19000196
    [Abstract] [Full Text] [Related]

  • 4. A Ca(2+)-sensitive system mediates low-affinity K(+) uptake in the absence of AKT1 in Arabidopsis plants.
    Caballero F, Botella MA, Rubio L, Fernández JA, Martínez V, Rubio F.
    Plant Cell Physiol; 2012 Dec; 53(12):2047-59. PubMed ID: 23054389
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis.
    Qi Z, Hampton CR, Shin R, Barkla BJ, White PJ, Schachtman DP.
    J Exp Bot; 2008 Dec; 59(3):595-607. PubMed ID: 18281719
    [Abstract] [Full Text] [Related]

  • 7. Modulation of K+ translocation by AKT1 and AtHAK5 in Arabidopsis plants.
    Nieves-Cordones M, Lara A, Ródenas R, Amo J, Rivero RM, Martínez V, Rubio F.
    Plant Cell Environ; 2019 Aug; 42(8):2357-2371. PubMed ID: 31046137
    [Abstract] [Full Text] [Related]

  • 8. Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9.
    Lara A, Ródenas R, Andrés Z, Martínez V, Quintero FJ, Nieves-Cordones M, Botella MA, Rubio F.
    J Exp Bot; 2020 Aug 06; 71(16):5053-5060. PubMed ID: 32484219
    [Abstract] [Full Text] [Related]

  • 9. A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency.
    Kim MJ, Ciani S, Schachtman DP.
    Mol Plant; 2010 Mar 06; 3(2):420-7. PubMed ID: 20139158
    [Abstract] [Full Text] [Related]

  • 10. Capacity and plasticity of potassium channels and high-affinity transporters in roots of barley and Arabidopsis.
    Coskun D, Britto DT, Li M, Oh S, Kronzucker HJ.
    Plant Physiol; 2013 May 06; 162(1):496-511. PubMed ID: 23553635
    [Abstract] [Full Text] [Related]

  • 11. Root K(+) acquisition in plants: the Arabidopsis thaliana model.
    Alemán F, Nieves-Cordones M, Martínez V, Rubio F.
    Plant Cell Physiol; 2011 Sep 06; 52(9):1603-12. PubMed ID: 21771865
    [Abstract] [Full Text] [Related]

  • 12. Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K uptake.
    Rubio F, Alemán F, Nieves-Cordones M, Martínez V.
    Physiol Plant; 2010 Jun 01; 139(2):220-8. PubMed ID: 20088908
    [Abstract] [Full Text] [Related]

  • 13. The CBL-Interacting Protein Kinase CIPK23 Regulates HAK5-Mediated High-Affinity K+ Uptake in Arabidopsis Roots.
    Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I, Nieves-Cordones M, Rivero RM, Martínez V, Pardo JM, Quintero FJ, Rubio F.
    Plant Physiol; 2015 Dec 01; 169(4):2863-73. PubMed ID: 26474642
    [Abstract] [Full Text] [Related]

  • 14. The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions.
    Kim MJ, Ruzicka D, Shin R, Schachtman DP.
    Mol Plant; 2012 Sep 01; 5(5):1042-57. PubMed ID: 22406475
    [Abstract] [Full Text] [Related]

  • 15. How DELLAs contribute to control potassium uptake under conditions of potassium scarcity? Hypotheses and uncertainties.
    Oliferuk S, Ródenas R, Pérez A, Martinez V, Rubio F, Santa María GE.
    Plant Signal Behav; 2017 Oct 03; 12(10):e1366396. PubMed ID: 28816584
    [Abstract] [Full Text] [Related]

  • 16. Arabidopsis HAK5 under low K+ availability operates as PMF powered high-affinity K+ transporter.
    Maierhofer T, Scherzer S, Carpaneto A, Müller TD, Pardo JM, Hänelt I, Geiger D, Hedrich R.
    Nat Commun; 2024 Oct 03; 15(1):8558. PubMed ID: 39362862
    [Abstract] [Full Text] [Related]

  • 17. Potassium channel alpha-subunit AtKC1 negatively regulates AKT1-mediated K(+) uptake in Arabidopsis roots under low-K(+) stress.
    Wang Y, He L, Li HD, Xu J, Wu WH.
    Cell Res; 2010 Jul 03; 20(7):826-37. PubMed ID: 20514083
    [Abstract] [Full Text] [Related]

  • 18. The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions.
    Nieves-Cordones M, Alemán F, Martínez V, Rubio F.
    Mol Plant; 2010 Mar 03; 3(2):326-33. PubMed ID: 20028724
    [Abstract] [Full Text] [Related]

  • 19. Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant.
    Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H.
    Plant Mol Biol; 2003 Mar 03; 51(5):773-87. PubMed ID: 12678562
    [Abstract] [Full Text] [Related]

  • 20. Heteromeric AtKC1{middle dot}AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions.
    Geiger D, Becker D, Vosloh D, Gambale F, Palme K, Rehers M, Anschuetz U, Dreyer I, Kudla J, Hedrich R.
    J Biol Chem; 2009 Aug 07; 284(32):21288-95. PubMed ID: 19509299
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 32.