These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 15742569

  • 1. Half-thickness inversion layer high-frequency ultrasonic transducers using LiNbO3 single crystal.
    Zhou Q, Cannata JM, Guo H, Huang C, Marmarelis VZ, Shung KK.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):127-33. PubMed ID: 15742569
    [Abstract] [Full Text] [Related]

  • 2. Design and modeling of inversion layer ultrasonic transducers using LiNbO3 single crystal.
    Zhou QF, Cannata J, Kirk Shung K.
    Ultrasonics; 2006 Dec 22; 44 Suppl 1():e607-11. PubMed ID: 16797635
    [Abstract] [Full Text] [Related]

  • 3. Broadband ultrasonic transducers using a LiNbO3 plate with a ferroelectric inversion layer.
    Nakamura K, Fukazawa K, Yamada K, Saito S.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov 22; 50(11):1558-62. PubMed ID: 14682639
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Bandwidth improvement of LiNbO3 ultrasonic transducers by half-concaved inversion layer approach.
    Chen J, Dai JY, Zhang C, Zhang ZT, Feng GP.
    Rev Sci Instrum; 2012 Nov 22; 83(11):114903. PubMed ID: 23206085
    [Abstract] [Full Text] [Related]

  • 7. Mass-spring matching layers for high-frequency ultrasound transducers: a new technique using vacuum deposition.
    Brown J, Sharma S, Leadbetter J, Cochran S, Adamson R.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov 22; 61(11):1911-21. PubMed ID: 25389169
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Enhancement of Ultrasonic Transducer Bandwidth by Acoustic Impedance Gradient Matching Layer.
    Zhu K, Ma J, Qi X, Shen B, Liu Y, Sun E, Zhang R.
    Sensors (Basel); 2022 Oct 20; 22(20):. PubMed ID: 36298374
    [Abstract] [Full Text] [Related]

  • 13. A New High-Temperature Ultrasonic Transducer for Continuous Inspection.
    Amini MH, Sinclair AN, Coyle TW.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar 20; 63(3):448-55. PubMed ID: 26829787
    [Abstract] [Full Text] [Related]

  • 14. An analytical model of multilayer ultrasonic transducers with an inversion layer.
    Huang C, Marmarelis VZ, Zhou Q, Shung KK.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Mar 20; 52(3):469-79. PubMed ID: 15857055
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Microfabrication of stacks of acoustic matching layers for 15 MHz ultrasonic transducers.
    Manh T, Nguyen AT, Johansen TF, Hoff L.
    Ultrasonics; 2014 Feb 20; 54(2):614-20. PubMed ID: 24041498
    [Abstract] [Full Text] [Related]

  • 20. Imaging with lithium niobate/epoxy composites.
    Schmarje N, Saillant JF, Kirk KJ, Cochran S.
    Ultrasonics; 2004 Apr 20; 42(1-9):439-42. PubMed ID: 15047325
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.