These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


243 related items for PubMed ID: 15743878

  • 1. VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation.
    Koizumi K, Naramoto S, Sawa S, Yahara N, Ueda T, Nakano A, Sugiyama M, Fukuda H.
    Development; 2005 Apr; 132(7):1699-711. PubMed ID: 15743878
    [Abstract] [Full Text] [Related]

  • 2. Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana.
    Wenzel CL, Schuetz M, Yu Q, Mattsson J.
    Plant J; 2007 Feb; 49(3):387-98. PubMed ID: 17217464
    [Abstract] [Full Text] [Related]

  • 3. Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants.
    Naramoto S, Sawa S, Koizumi K, Uemura T, Ueda T, Friml J, Nakano A, Fukuda H.
    Development; 2009 May; 136(9):1529-38. PubMed ID: 19363154
    [Abstract] [Full Text] [Related]

  • 4. Vacuolar SNAREs function in the formation of the leaf vascular network by regulating auxin distribution.
    Shirakawa M, Ueda H, Shimada T, Nishiyama C, Hara-Nishimura I.
    Plant Cell Physiol; 2009 Jul; 50(7):1319-28. PubMed ID: 19493960
    [Abstract] [Full Text] [Related]

  • 5. CVP2- and CVL1-mediated phosphoinositide signaling as a regulator of the ARF GAP SFC/VAN3 in establishment of foliar vein patterns.
    Carland F, Nelson T.
    Plant J; 2009 Sep; 59(6):895-907. PubMed ID: 19473324
    [Abstract] [Full Text] [Related]

  • 6. DRP1A is responsible for vascular continuity synergistically working with VAN3 in Arabidopsis.
    Sawa S, Koizumi K, Naramoto S, Demura T, Ueda T, Nakano A, Fukuda H.
    Plant Physiol; 2005 Jun; 138(2):819-26. PubMed ID: 15923323
    [Abstract] [Full Text] [Related]

  • 7. Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development.
    Zhuang X, Jiang J, Li J, Ma Q, Xu Y, Xue Y, Xu Z, Chong K.
    Plant J; 2006 Nov; 48(4):581-91. PubMed ID: 17059407
    [Abstract] [Full Text] [Related]

  • 8. The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis.
    Alonso-Peral MM, Candela H, del Pozo JC, Martínez-Laborda A, Ponce MR, Micol JL.
    Development; 2006 Oct; 133(19):3755-66. PubMed ID: 16943276
    [Abstract] [Full Text] [Related]

  • 9. ARF GTPase machinery at the plasma membrane regulates auxin transport-mediated plant growth.
    Naramoto S, Kyozuka J.
    Plant Biotechnol (Tokyo); 2018 Jun 25; 35(2):155-159. PubMed ID: 31819717
    [Abstract] [Full Text] [Related]

  • 10. AGD5 is a GTPase-activating protein at the trans-Golgi network.
    Stefano G, Renna L, Rossi M, Azzarello E, Pollastri S, Brandizzi F, Baluska F, Mancuso S.
    Plant J; 2010 Dec 25; 64(5):790-9. PubMed ID: 21105926
    [Abstract] [Full Text] [Related]

  • 11. SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis.
    Sieburth LE, Muday GK, King EJ, Benton G, Kim S, Metcalf KE, Meyers L, Seamen E, Van Norman JM.
    Plant Cell; 2006 Jun 25; 18(6):1396-411. PubMed ID: 16698946
    [Abstract] [Full Text] [Related]

  • 12. ADP-ribosylation factor machinery mediates endocytosis in plant cells.
    Naramoto S, Kleine-Vehn J, Robert S, Fujimoto M, Dainobu T, Paciorek T, Ueda T, Nakano A, Van Montagu MC, Fukuda H, Friml J.
    Proc Natl Acad Sci U S A; 2010 Dec 14; 107(50):21890-5. PubMed ID: 21118984
    [Abstract] [Full Text] [Related]

  • 13. FORKED1 encodes a PH domain protein that is required for PIN1 localization in developing leaf veins.
    Hou H, Erickson J, Meservy J, Schultz EA.
    Plant J; 2010 Sep 14; 63(6):960-73. PubMed ID: 20626652
    [Abstract] [Full Text] [Related]

  • 14. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family.
    Liu S, Wang J, Wang L, Wang X, Xue Y, Wu P, Shou H.
    Cell Res; 2009 Sep 14; 19(9):1110-9. PubMed ID: 19546891
    [Abstract] [Full Text] [Related]

  • 15. KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis.
    Izhaki A, Bowman JL.
    Plant Cell; 2007 Feb 14; 19(2):495-508. PubMed ID: 17307928
    [Abstract] [Full Text] [Related]

  • 16. ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis.
    Kleine-Vehn J, Dhonukshe P, Sauer M, Brewer PB, Wiśniewska J, Paciorek T, Benková E, Friml J.
    Curr Biol; 2008 Apr 08; 18(7):526-31. PubMed ID: 18394892
    [Abstract] [Full Text] [Related]

  • 17. Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis.
    Rolland-Lagan AG, Prusinkiewicz P.
    Plant J; 2005 Dec 08; 44(5):854-65. PubMed ID: 16297075
    [Abstract] [Full Text] [Related]

  • 18. Pattern formation of leaf veins by the positive feedback regulation between auxin flow and auxin efflux carrier.
    Fujita H, Mochizuki A.
    J Theor Biol; 2006 Aug 07; 241(3):541-51. PubMed ID: 16510156
    [Abstract] [Full Text] [Related]

  • 19. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves.
    Donner TJ, Sherr I, Scarpella E.
    Development; 2009 Oct 07; 136(19):3235-46. PubMed ID: 19710171
    [Abstract] [Full Text] [Related]

  • 20. Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis.
    Fukaki H, Nakao Y, Okushima Y, Theologis A, Tasaka M.
    Plant J; 2005 Nov 07; 44(3):382-95. PubMed ID: 16236149
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.