These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration. Viringipurampeer IA, Gregory-Evans CY, Metcalfe AL, Bashar E, Moritz OL, Gregory-Evans K. Mol Neurobiol; 2019 Mar; 56(3):1637-1652. PubMed ID: 29911255 [Abstract] [Full Text] [Related]
24. AAV-Txnip prolongs cone survival and vision in mouse models of retinitis pigmentosa. Xue Y, Wang SK, Rana P, West ER, Hong CM, Feng H, Wu DM, Cepko CL. Elife; 2021 Apr 13; 10():. PubMed ID: 33847261 [Abstract] [Full Text] [Related]
25. Testing for a gap junction-mediated bystander effect in retinitis pigmentosa: secondary cone death is not altered by deletion of connexin36 from cones. Kranz K, Paquet-Durand F, Weiler R, Janssen-Bienhold U, Dedek K. PLoS One; 2013 Apr 13; 8(2):e57163. PubMed ID: 23468924 [Abstract] [Full Text] [Related]
29. Knockout of CaV1.3 L-type calcium channels in a mouse model of retinitis pigmentosa. Kilicarslan I, Zanetti L, Novelli E, Schwarzer C, Strettoi E, Koschak A. Sci Rep; 2021 Jul 26; 11(1):15146. PubMed ID: 34312410 [Abstract] [Full Text] [Related]
30. Ribosomal protein S6 kinase 1 promotes the survival of photoreceptors in retinitis pigmentosa. Lin B, Xiong G, Yang W. Cell Death Dis; 2018 Nov 15; 9(12):1141. PubMed ID: 30442943 [Abstract] [Full Text] [Related]
31. Differential sensitivity of cones to iron-mediated oxidative damage. Rogers BS, Symons RC, Komeima K, Shen J, Xiao W, Swaim ME, Gong YY, Kachi S, Campochiaro PA. Invest Ophthalmol Vis Sci; 2007 Jan 15; 48(1):438-45. PubMed ID: 17197565 [Abstract] [Full Text] [Related]
32. Prion-induced photoreceptor degeneration begins with misfolded prion protein accumulation in cones at two distinct sites: cilia and ribbon synapses. Striebel JF, Race B, Leung JM, Schwartz C, Chesebro B. Acta Neuropathol Commun; 2021 Jan 29; 9(1):17. PubMed ID: 33509294 [Abstract] [Full Text] [Related]
33. Single-cell RNA sequencing of the retina in a model of retinitis pigmentosa reveals early responses to degeneration in rods and cones. Karademir D, Todorova V, Ebner LJA, Samardzija M, Grimm C. BMC Biol; 2022 Apr 12; 20(1):86. PubMed ID: 35413909 [Abstract] [Full Text] [Related]
34. Oxidative stress-induced alterations in retinal glucose metabolism in Retinitis Pigmentosa. Kanan Y, Hackett SF, Taneja K, Khan M, Campochiaro PA. Free Radic Biol Med; 2022 Mar 12; 181():143-153. PubMed ID: 35134532 [Abstract] [Full Text] [Related]
35. Blockade of neuronal nitric oxide synthase reduces cone cell death in a model of retinitis pigmentosa. Komeima K, Usui S, Shen J, Rogers BS, Campochiaro PA. Free Radic Biol Med; 2008 Sep 15; 45(6):905-12. PubMed ID: 18634866 [Abstract] [Full Text] [Related]
36. Selective rod degeneration and partial cone inactivation characterize an iodoacetic acid model of Swine retinal degeneration. Wang W, Fernandez de Castro J, Vukmanic E, Zhou L, Emery D, Demarco PJ, Kaplan HJ, Dean DC. Invest Ophthalmol Vis Sci; 2011 Oct 07; 52(11):7917-23. PubMed ID: 21896868 [Abstract] [Full Text] [Related]
37. Controlled rod cell ablation in transgenic Xenopus laevis. Hamm LM, Tam BM, Moritz OL. Invest Ophthalmol Vis Sci; 2009 Feb 07; 50(2):885-92. PubMed ID: 18836175 [Abstract] [Full Text] [Related]
38. TIMP-1 affects the spatial distribution of dendritic processes of second-order neurons in a rat model of Retinitis Pigmentosa. Shin JA, Eom YS, Yu WQ, Grzywacz NM, Craft CM, Lee EJ. Exp Eye Res; 2015 Nov 07; 140():41-52. PubMed ID: 26277580 [Abstract] [Full Text] [Related]
39. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Lin B, Masland RH, Strettoi E. Exp Eye Res; 2009 Mar 07; 88(3):589-99. PubMed ID: 19087876 [Abstract] [Full Text] [Related]