These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
205 related items for PubMed ID: 1575747
1. Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates of energy metabolism in spf mice. Ratnakumari L, Qureshi IA, Butterworth RF. Biochem Biophys Res Commun; 1992 Apr 30; 184(2):746-51. PubMed ID: 1575747 [Abstract] [Full Text] [Related]
2. Effect of L-carnitine on cerebral and hepatic energy metabolites in congenitally hyperammonemic sparse-fur mice and its role during benzoate therapy. Ratnakumari L, Qureshi IA, Butterworth RF. Metabolism; 1993 Aug 30; 42(8):1039-46. PubMed ID: 8102193 [Abstract] [Full Text] [Related]
3. Effect of sodium benzoate on cerebral and hepatic energy metabolites in spf mice with congenital hyperammonemia. Ratnakumari L, Qureshi IA, Butterworth RF. Biochem Pharmacol; 1993 Jan 07; 45(1):137-46. PubMed ID: 8424807 [Abstract] [Full Text] [Related]
5. Comprehensive characterization of ureagenesis in the spfash mouse, a model of human ornithine transcarbamylase deficiency, reveals age-dependency of ammonia detoxification. Allegri G, Deplazes S, Rimann N, Causton B, Scherer T, Leff JW, Diez-Fernandez C, Klimovskaia A, Fingerhut R, Krijt J, Kožich V, Nuoffer JM, Grisch-Chan HM, Thöny B, Häberle J. J Inherit Metab Dis; 2019 Nov 07; 42(6):1064-1076. PubMed ID: 30714172 [Abstract] [Full Text] [Related]
6. Progressive decrease of cerebral cytochrome C oxidase activity in sparse-fur mice: role of acetyl-L-carnitine in restoring the ammonia-induced cerebral energy depletion. Rao KV, Mawal YR, Qureshi IA. Neurosci Lett; 1997 Mar 14; 224(2):83-6. PubMed ID: 9086462 [Abstract] [Full Text] [Related]
7. Transient hyperammonemia during aging in ornithine transcarbamylase-deficient, sparse-fur mice. Gushiken T, Yoshimura N, Saheki T. Biochem Int; 1985 Nov 14; 11(5):637-43. PubMed ID: 4091843 [Abstract] [Full Text] [Related]
8. Developmental study of hepatic glutamine synthetase in a mouse model of congenital hyperammonemia. Skarpetas A, Mawal Y, Qureshi IA. Biochem Mol Biol Int; 1997 Sep 14; 43(1):133-9. PubMed ID: 9315291 [Abstract] [Full Text] [Related]
9. Regional amino acid neurotransmitter changes in brains of spf/Y mice with congenital ornithine transcarbamylase deficiency. Ratnakumari L, Qureshi IA, Butterworth RF. Metab Brain Dis; 1994 Mar 14; 9(1):43-51. PubMed ID: 7914668 [Abstract] [Full Text] [Related]
10. Differential inhibition by hyperammonemia of the electron transport chain enzymes in synaptosomes and non-synaptic mitochondria in ornithine transcarbamylase-deficient spf-mice: restoration by acetyl-L-carnitine. Qureshi K, Rao KV, Qureshi IA. Neurochem Res; 1998 Jun 14; 23(6):855-61. PubMed ID: 9572674 [Abstract] [Full Text] [Related]
11. Reduction in the MK-801 binding sites of the NMDA sub-type of glutamate receptor in a mouse model of congenital hyperammonemia: prevention by acetyl-L-carnitine. Rao KV, Qureshi IA. Neuropharmacology; 1999 Mar 14; 38(3):383-94. PubMed ID: 10219976 [Abstract] [Full Text] [Related]
12. Interaction between murine spf-ash mutation and genetic background yields different metabolic phenotypes. Marini JC, Erez A, Castillo L, Lee B. Am J Physiol Endocrinol Metab; 2007 Dec 14; 293(6):E1764-71. PubMed ID: 17925451 [Abstract] [Full Text] [Related]
13. On mechanisms in hyperammonemic coma--with particular reference to hepatic encephalopathy. Hindfelt B. Ann N Y Acad Sci; 1975 Apr 25; 252():116-23. PubMed ID: 238449 [No Abstract] [Full Text] [Related]
14. Organic acid metabolism in a patient with ornithine transcarbamylase deficiency. Kodama H, Nose O, Okada S, Maki I, Tajiri H, Sano T, Yabuuchi H. Clin Chim Acta; 1982 Aug 04; 123(1-2):83-91. PubMed ID: 7116641 [Abstract] [Full Text] [Related]
15. Aberrations of ammonia metabolism in ornithine carbamoyltransferase-deficient spf-ash mice and their prevention by treatment with urea cycle intermediate amino acids and an ornithine aminotransferase inactivator. Li MX, Nakajima T, Fukushige T, Kobayashi K, Seiler N, Saheki T. Biochim Biophys Acta; 1999 Sep 20; 1455(1):1-11. PubMed ID: 10524224 [Abstract] [Full Text] [Related]
16. Efficient mitochondrial import of newly synthesized ornithine transcarbamylase (OTC) and correction of secondary metabolic alterations in spf(ash) mice following gene therapy of OTC deficiency. Zimmer KP, Bendiks M, Mori M, Kominami E, Robinson MB, Ye X, Wilson JM. Mol Med; 1999 Apr 20; 5(4):244-53. PubMed ID: 10448647 [Abstract] [Full Text] [Related]
17. Ornithine restores ureagenesis capacity and mitigates hyperammonemia in Otc(spf-ash) mice. Marini JC, Lee B, Garlick PJ. J Nutr; 2006 Jul 20; 136(7):1834-8. PubMed ID: 16772445 [Abstract] [Full Text] [Related]
18. Breeding experiments to combine the X-linked sparse-fur (spf) mutation with the autosomal recessive BALB/cByJ strain: testing the biochemical phenotype of double-mutant mice as a model for ammonia: fatty acyl CoA synergism. Qureshi IA, Leblanc D, Cyr D, Giguère R, Mitchell G. Biochem Biophys Res Commun; 1993 Mar 15; 191(2):744-9. PubMed ID: 8461026 [Abstract] [Full Text] [Related]
19. Evidence of excitotoxicity in the brain of the ornithine carbamoyltransferase deficient sparse fur mouse. Robinson MB, Hopkins K, Batshaw ML, McLaughlin BA, Heyes MP, Oster-Granite ML. Brain Res Dev Brain Res; 1995 Dec 21; 90(1-2):35-44. PubMed ID: 8777776 [Abstract] [Full Text] [Related]
20. The sparse fur mouse as a model for gene therapy in ornithine carbamoyltransferase deficiency. Batshaw ML, Yudkoff M, McLaughlin BA, Gorry E, Anegawa NJ, Smith IA, Hyman SL, Robinson MB. Gene Ther; 1995 Dec 21; 2(10):743-9. PubMed ID: 8750014 [Abstract] [Full Text] [Related] Page: [Next] [New Search]