These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


271 related items for PubMed ID: 15759235

  • 1. Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography.
    Eser P, Frotzler A, Zehnder Y, Denoth J.
    Arch Phys Med Rehabil; 2005 Mar; 86(3):498-504. PubMed ID: 15759235
    [Abstract] [Full Text] [Related]

  • 2. Patient-specific bone mineral density distribution in the tibia of individuals with chronic spinal cord injury, derived from multi-slice peripheral Quantitative Computed Tomography (pQCT) - A cross-sectional study.
    Coupaud S, Gislason MK, Purcell M, Sasagawa K, Tanner KE.
    Bone; 2017 Apr; 97():29-37. PubMed ID: 28034635
    [Abstract] [Full Text] [Related]

  • 3. Decreases in bone mineral density at cortical and trabecular sites in the tibia and femur during the first year of spinal cord injury.
    Coupaud S, McLean AN, Purcell M, Fraser MH, Allan DB.
    Bone; 2015 May; 74():69-75. PubMed ID: 25596521
    [Abstract] [Full Text] [Related]

  • 4. Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT).
    Frotzler A, Berger M, Knecht H, Eser P.
    Bone; 2008 Sep; 43(3):549-55. PubMed ID: 18567554
    [Abstract] [Full Text] [Related]

  • 5. Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals.
    Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J, Schiessl H.
    Bone; 2004 May; 34(5):869-80. PubMed ID: 15121019
    [Abstract] [Full Text] [Related]

  • 6. Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography.
    Frey-Rindova P, de Bruin ED, Stüssi E, Dambacher MA, Dietz V.
    Spinal Cord; 2000 Jan; 38(1):26-32. PubMed ID: 10762194
    [Abstract] [Full Text] [Related]

  • 7. Bone changes in the lower limbs from participation in an FES rowing exercise program implemented within two years after traumatic spinal cord injury.
    Lambach RL, Stafford NE, Kolesar JA, Kiratli BJ, Creasey GH, Gibbons RS, Andrews BJ, Beaupre GS.
    J Spinal Cord Med; 2020 May; 43(3):306-314. PubMed ID: 30475172
    [Abstract] [Full Text] [Related]

  • 8. Bone morphology of the femur and tibia captured by statistical shape modelling predicts rapid bone loss in acute spinal cord injury patients.
    Varzi D, Coupaud SAF, Purcell M, Allan DB, Gregory JS, Barr RJ.
    Bone; 2015 Dec; 81():495-501. PubMed ID: 26341577
    [Abstract] [Full Text] [Related]

  • 9. Trabecular Bone Score at the Distal Femur and Proximal Tibia in Individuals With Spinal Cord Injury.
    Lobos S, Cooke A, Simonett G, Ho C, Boyd SK, Edwards WB.
    J Clin Densitom; 2019 Dec; 22(2):249-256. PubMed ID: 29776736
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men.
    Zehnder Y, Lüthi M, Michel D, Knecht H, Perrelet R, Neto I, Kraenzlin M, Zäch G, Lippuner K.
    Osteoporos Int; 2004 Mar; 15(3):180-9. PubMed ID: 14722626
    [Abstract] [Full Text] [Related]

  • 12. Bone loss at the distal femur and proximal tibia in persons with spinal cord injury: imaging approaches, risk of fracture, and potential treatment options.
    Cirnigliaro CM, Myslinski MJ, La Fountaine MF, Kirshblum SC, Forrest GF, Bauman WA.
    Osteoporos Int; 2017 Mar; 28(3):747-765. PubMed ID: 27921146
    [Abstract] [Full Text] [Related]

  • 13. Peripheral quantitative computed tomography: measurement sensitivity in persons with and without spinal cord injury.
    Shields RK, Dudley-Javoroski S, Boaldin KM, Corey TA, Fog DB, Ruen JM.
    Arch Phys Med Rehabil; 2006 Oct; 87(10):1376-81. PubMed ID: 17023249
    [Abstract] [Full Text] [Related]

  • 14. Exploring the determinants of fracture risk among individuals with spinal cord injury.
    Lala D, Craven BC, Thabane L, Papaioannou A, Adachi JD, Popovic MR, Giangregorio LM.
    Osteoporos Int; 2014 Jan; 25(1):177-85. PubMed ID: 23812595
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Can FES-rowing mediate bone mineral density in SCI: a pilot study.
    Gibbons RS, McCarthy ID, Gall A, Stock CG, Shippen J, Andrews BJ.
    Spinal Cord; 2014 Nov; 52 Suppl 3():S4-5. PubMed ID: 25376313
    [Abstract] [Full Text] [Related]

  • 17. Bone fragility after spinal cord injury: reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time.
    Haider IT, Lobos SM, Simonian N, Schnitzer TJ, Edwards WB.
    Osteoporos Int; 2018 Dec; 29(12):2703-2715. PubMed ID: 30334093
    [Abstract] [Full Text] [Related]

  • 18. Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury.
    Edwards WB, Schnitzer TJ, Troy KL.
    Osteoporos Int; 2014 Mar; 25(3):1005-15. PubMed ID: 24190426
    [Abstract] [Full Text] [Related]

  • 19. Regional cortical and trabecular bone loss after spinal cord injury.
    Dudley-Javoroski S, Shields RK.
    J Rehabil Res Dev; 2012 Mar; 49(9):1365-76. PubMed ID: 23408218
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.