These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1006 related items for PubMed ID: 15763260
1. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Lu HH, Cooper JA, Manuel S, Freeman JW, Attawia MA, Ko FK, Laurencin CT. Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260 [Abstract] [Full Text] [Related]
2. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT. Biomaterials; 2005 May; 26(13):1523-32. PubMed ID: 15522754 [Abstract] [Full Text] [Related]
3. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH, El-Amin SF, Scott KD, Laurencin CT. J Biomed Mater Res A; 2003 Mar 01; 64(3):465-74. PubMed ID: 12579560 [Abstract] [Full Text] [Related]
4. Tissue engineering of the anterior cruciate ligament: the viscoelastic behavior and cell viability of a novel braid-twist scaffold. Freeman JW, Woods MD, Cromer DA, Wright LD, Laurencin CT. J Biomater Sci Polym Ed; 2009 Mar 01; 20(12):1709-28. PubMed ID: 19723437 [Abstract] [Full Text] [Related]
5. Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering. Krebs MD, Sutter KA, Lin AS, Guldberg RE, Alsberg E. Acta Biomater; 2009 Oct 01; 5(8):2847-59. PubMed ID: 19446056 [Abstract] [Full Text] [Related]
7. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Sung HJ, Meredith C, Johnson C, Galis ZS. Biomaterials; 2004 Nov 01; 25(26):5735-42. PubMed ID: 15147819 [Abstract] [Full Text] [Related]
8. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering. Sahoo S, Cho-Hong JG, Siew-Lok T. Biomed Mater; 2007 Sep 01; 2(3):169-73. PubMed ID: 18458468 [Abstract] [Full Text] [Related]
9. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. Park K, Ju YM, Son JS, Ahn KD, Han DK. J Biomater Sci Polym Ed; 2007 Sep 01; 18(4):369-82. PubMed ID: 17540114 [Abstract] [Full Text] [Related]
10. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Lee SH, Kim BS, Kim SH, Choi SW, Jeong SI, Kwon IK, Kang SW, Nikolovski J, Mooney DJ, Han YK, Kim YH. J Biomed Mater Res A; 2003 Jul 01; 66(1):29-37. PubMed ID: 12833428 [Abstract] [Full Text] [Related]
11. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M. Biomaterials; 2005 Jul 01; 26(20):4273-9. PubMed ID: 15683651 [Abstract] [Full Text] [Related]
12. Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design. Freeman JW, Woods MD, Laurencin CT. J Biomech; 2007 Jul 01; 40(9):2029-36. PubMed ID: 17097666 [Abstract] [Full Text] [Related]
19. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Pattison MA, Wurster S, Webster TJ, Haberstroh KM. Biomaterials; 2005 May 01; 26(15):2491-500. PubMed ID: 15585251 [Abstract] [Full Text] [Related]
20. Changes in mechanical properties and cellularity during long-term culture of collagen fiber ACL reconstruction scaffolds. Caruso AB, Dunn MG. J Biomed Mater Res A; 2005 Jun 15; 73(4):388-97. PubMed ID: 15880693 [Abstract] [Full Text] [Related] Page: [Next] [New Search]