These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1662 related items for PubMed ID: 15763261

  • 1. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S.
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [Abstract] [Full Text] [Related]

  • 2. Engineering craniofacial scaffolds.
    Hollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, Williams JM, Partee B, Flanagan CL, Diggs A, Wilke EN, Van Lenthe GH, Müller R, Wirtz T, Das S, Feinberg SE, Krebsbach PH.
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [Abstract] [Full Text] [Related]

  • 3. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L, Güçeri S, Chang R, Gordon J, Kang Q, Hartsock L, An Y, Sun W.
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [Abstract] [Full Text] [Related]

  • 4. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering.
    Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YC, Tan LP.
    Acta Biomater; 2010 Jun; 6(6):2028-34. PubMed ID: 20026436
    [Abstract] [Full Text] [Related]

  • 5. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL.
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [Abstract] [Full Text] [Related]

  • 6. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response.
    Thuaksuban N, Nuntanaranont T, Pattanachot W, Suttapreyasri S, Cheung LK.
    Biomed Mater; 2011 Feb; 6(1):015009. PubMed ID: 21205996
    [Abstract] [Full Text] [Related]

  • 7. Porous scaffold design for tissue engineering.
    Hollister SJ.
    Nat Mater; 2005 Jul; 4(7):518-24. PubMed ID: 16003400
    [Abstract] [Full Text] [Related]

  • 8. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method.
    Oh SH, Park IK, Kim JM, Lee JH.
    Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648
    [Abstract] [Full Text] [Related]

  • 9. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering.
    Chim H, Hutmacher DW, Chou AM, Oliveira AL, Reis RL, Lim TC, Schantz JT.
    Int J Oral Maxillofac Surg; 2006 Oct; 35(10):928-34. PubMed ID: 16762529
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Selective laser sintering of biocompatible polymers for applications in tissue engineering.
    Tan KH, Chua CK, Leong KF, Cheah CM, Gui WS, Tan WS, Wiria FE.
    Biomed Mater Eng; 2005 Oct; 15(1-2):113-24. PubMed ID: 15623935
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro.
    Shor L, Güçeri S, Wen X, Gandhi M, Sun W.
    Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds.
    Jiang CP, Chen YY, Hsieh MF, Lee HM.
    Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877
    [Abstract] [Full Text] [Related]

  • 16. The mechanical integrity of in vivo engineered heterotopic bone.
    Warnke PH, Springer IN, Acil Y, Julga G, Wiltfang J, Ludwig K, Russo PA, Sherry E, Sivananthan S, Hedderich J, Terheyden H.
    Biomaterials; 2006 Mar; 27(7):1081-7. PubMed ID: 16120459
    [Abstract] [Full Text] [Related]

  • 17. Integrating novel technologies to fabricate smart scaffolds.
    Moroni L, de Wijn JR, van Blitterswijk CA.
    J Biomater Sci Polym Ed; 2008 Mar; 19(5):543-72. PubMed ID: 18419938
    [Abstract] [Full Text] [Related]

  • 18. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells.
    Kim HJ, Kim UJ, Vunjak-Novakovic G, Min BH, Kaplan DL.
    Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373
    [Abstract] [Full Text] [Related]

  • 19. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration.
    Park SH, Kim TG, Kim HC, Yang DY, Park TG.
    Acta Biomater; 2008 Sep; 4(5):1198-207. PubMed ID: 18458008
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 84.