These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


292 related items for PubMed ID: 15765135

  • 1. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes.
    McKinsey TA, Olson EN.
    J Clin Invest; 2005 Mar; 115(3):538-46. PubMed ID: 15765135
    [Abstract] [Full Text] [Related]

  • 2. Control of cardiac hypertrophy and heart failure by histone acetylation/deacetylation.
    Olson EN, Backs J, McKinsey TA.
    Novartis Found Symp; 2006 Mar; 274():3-12; discussion 13-9, 152-5, 272-6. PubMed ID: 17019803
    [Abstract] [Full Text] [Related]

  • 3. Control of cardiac growth by histone acetylation/deacetylation.
    Backs J, Olson EN.
    Circ Res; 2006 Jan 06; 98(1):15-24. PubMed ID: 16397154
    [Abstract] [Full Text] [Related]

  • 4. Interference of antihypertrophic molecules and signaling pathways with the Ca2+-calcineurin-NFAT cascade in cardiac myocytes.
    Fiedler B, Wollert KC.
    Cardiovasc Res; 2004 Aug 15; 63(3):450-7. PubMed ID: 15276470
    [Abstract] [Full Text] [Related]

  • 5. Targeting histone deacetylases for heart failure.
    Bush EW, McKinsey TA.
    Expert Opin Ther Targets; 2009 Jul 15; 13(7):767-84. PubMed ID: 19466913
    [Abstract] [Full Text] [Related]

  • 6. Derepression of pathological cardiac genes by members of the CaM kinase superfamily.
    McKinsey TA.
    Cardiovasc Res; 2007 Mar 01; 73(4):667-77. PubMed ID: 17217938
    [Abstract] [Full Text] [Related]

  • 7. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure.
    Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S.
    Circ Res; 2008 Oct 10; 103(8):891-9. PubMed ID: 18776042
    [Abstract] [Full Text] [Related]

  • 8. The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment.
    Dai YS, Xu J, Molkentin JD.
    Mol Cell Biol; 2005 Nov 10; 25(22):9936-48. PubMed ID: 16260608
    [Abstract] [Full Text] [Related]

  • 9. Cardiac histone acetylation--therapeutic opportunities abound.
    McKinsey TA, Olson EN.
    Trends Genet; 2004 Apr 10; 20(4):206-13. PubMed ID: 15041175
    [Abstract] [Full Text] [Related]

  • 10. c-Ski activates MyoD in the nucleus of myoblastic cells through suppression of histone deacetylases.
    Kobayashi N, Goto K, Horiguchi K, Nagata M, Kawata M, Miyazawa K, Saitoh M, Miyazono K.
    Genes Cells; 2007 Mar 10; 12(3):375-85. PubMed ID: 17352741
    [Abstract] [Full Text] [Related]

  • 11. The biology and therapeutic implications of HDACs in the heart.
    McKinsey TA.
    Handb Exp Pharmacol; 2011 Mar 10; 206():57-78. PubMed ID: 21879446
    [Abstract] [Full Text] [Related]

  • 12. Sculpting heart valves with NFATc and VEGF.
    Lambrechts D, Carmeliet P.
    Cell; 2004 Sep 03; 118(5):532-4. PubMed ID: 15339657
    [Abstract] [Full Text] [Related]

  • 13. HDAC lightens a heavy heart.
    Metzger JM.
    Nat Med; 2002 Oct 03; 8(10):1078-9. PubMed ID: 12357239
    [No Abstract] [Full Text] [Related]

  • 14. Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo.
    Pavan Kumar P, Purbey PK, Sinha CK, Notani D, Limaye A, Jayani RS, Galande S.
    Mol Cell; 2006 Apr 21; 22(2):231-43. PubMed ID: 16630892
    [Abstract] [Full Text] [Related]

  • 15. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2.
    Grégoire S, Xiao L, Nie J, Zhang X, Xu M, Li J, Wong J, Seto E, Yang XJ.
    Mol Cell Biol; 2007 Feb 21; 27(4):1280-95. PubMed ID: 17158926
    [Abstract] [Full Text] [Related]

  • 16. Dosage-dependent transcriptional regulation by the calcineurin/NFAT signaling in developing myocardium transition.
    Yang XY, Yang TT, Schubert W, Factor SM, Chow CW.
    Dev Biol; 2007 Mar 15; 303(2):825-37. PubMed ID: 17198697
    [Abstract] [Full Text] [Related]

  • 17. Convergence of protein kinase C and JAK-STAT signaling on transcription factor GATA-4.
    Wang J, Paradis P, Aries A, Komati H, Lefebvre C, Wang H, Nemer M.
    Mol Cell Biol; 2005 Nov 15; 25(22):9829-44. PubMed ID: 16260600
    [Abstract] [Full Text] [Related]

  • 18. Chromatin-associated regulation of HIV-1 transcription: implications for the development of therapeutic strategies.
    Quivy V, De Walque S, Van Lint C.
    Subcell Biochem; 2007 Nov 15; 41():371-96. PubMed ID: 17484137
    [Abstract] [Full Text] [Related]

  • 19. Dual roles of histone deacetylases in the control of cardiac growth.
    McKinsey TA, Olson EN.
    Novartis Found Symp; 2004 Nov 15; 259():132-41; discussion 141-5, 163-9. PubMed ID: 15171251
    [Abstract] [Full Text] [Related]

  • 20. Transcriptional genomics associates FOX transcription factors with human heart failure.
    Hannenhalli S, Putt ME, Gilmore JM, Wang J, Parmacek MS, Epstein JA, Morrisey EE, Margulies KB, Cappola TP.
    Circulation; 2006 Sep 19; 114(12):1269-76. PubMed ID: 16952980
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.