These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
635 related items for PubMed ID: 15767301
1. Hindlimb function in the alligator: integrating movements, motor patterns, ground reaction forces and bone strain of terrestrial locomotion. Reilly SM, Willey JS, Biknevicius AR, Blob RW. J Exp Biol; 2005 Mar; 208(Pt 6):993-1009. PubMed ID: 15767301 [Abstract] [Full Text] [Related]
2. In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics. Butcher MT, Espinoza NR, Cirilo SR, Blob RW. J Exp Biol; 2008 Aug; 211(Pt 15):2397-407. PubMed ID: 18626073 [Abstract] [Full Text] [Related]
3. Mechanics of limb bone loading during terrestrial locomotion in river cooter turtles (Pseudemys concinna). Butcher MT, Blob RW. J Exp Biol; 2008 Apr; 211(Pt 8):1187-202. PubMed ID: 18375843 [Abstract] [Full Text] [Related]
4. In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design. Butcher MT, White BJ, Hudzik NB, Gosnell WC, Parrish JH, Blob RW. J Exp Biol; 2011 Aug 01; 214(Pt 15):2631-40. PubMed ID: 21753057 [Abstract] [Full Text] [Related]
5. Mechanics of limb bone loading during terrestrial locomotion in the green iguana (Iguana iguana) and American alligator (Alligator mississippiensis). Blob RW, Biewener AA. J Exp Biol; 2001 Mar 01; 204(Pt 6):1099-122. PubMed ID: 11222128 [Abstract] [Full Text] [Related]
6. Femoral loading mechanics in the Virginia opossum, Didelphis virginiana: torsion and mediolateral bending in mammalian locomotion. Gosnell WC, Butcher MT, Maie T, Blob RW. J Exp Biol; 2011 Oct 15; 214(Pt 20):3455-66. PubMed ID: 21957109 [Abstract] [Full Text] [Related]
7. Loading mechanics of the femur in tiger salamanders (Ambystoma tigrinum) during terrestrial locomotion. Sheffield KM, Blob RW. J Exp Biol; 2011 Aug 01; 214(Pt 15):2603-15. PubMed ID: 21753055 [Abstract] [Full Text] [Related]
8. Correlation of muscle function and bone strain in the hindlimb of the river cooter turtle (Pseudemys concinna). Aiello BR, Blob RW, Butcher MT. J Morphol; 2013 Sep 01; 274(9):1060-9. PubMed ID: 23733583 [Abstract] [Full Text] [Related]
9. Motor control of locomotor hindlimb posture in the American alligator (Alligator mississippiensis). Reilly SM, Blob RW. J Exp Biol; 2003 Dec 01; 206(Pt 23):4327-40. PubMed ID: 14581602 [Abstract] [Full Text] [Related]
10. Mechanical properties of the hindlimb bones of bullfrogs and cane toads in bending and torsion. Wilson MP, Espinoza NR, Shah SR, Blob RW. Anat Rec (Hoboken); 2009 Jul 01; 292(7):935-44. PubMed ID: 19548305 [Abstract] [Full Text] [Related]
11. Musculoskeletal modelling of the Nile crocodile (Crocodylus niloticus) hindlimb: Effects of limb posture on leverage during terrestrial locomotion. Wiseman ALA, Bishop PJ, Demuth OE, Cuff AR, Michel KB, Hutchinson JR. J Anat; 2021 Aug 01; 239(2):424-444. PubMed ID: 33754362 [Abstract] [Full Text] [Related]
12. Locomotor loading mechanics in the hindlimbs of tegu lizards (Tupinambis merianae): comparative and evolutionary implications. Sheffield KM, Butcher MT, Shugart SK, Gander JC, Blob RW. J Exp Biol; 2011 Aug 01; 214(Pt 15):2616-30. PubMed ID: 21753056 [Abstract] [Full Text] [Related]
13. Control of ground reaction forces by hindlimb muscles during cat locomotion. Kaya M, Leonard TR, Herzog W. J Biomech; 2006 Aug 01; 39(15):2752-66. PubMed ID: 16310793 [Abstract] [Full Text] [Related]
14. In vivo muscle function vs speed. I. Muscle strain in relation to length change of the muscle-tendon unit. Hoyt DF, Wickler SJ, Biewener AA, Cogger EA, De La Paz KL. J Exp Biol; 2005 Mar 01; 208(Pt 6):1175-90. PubMed ID: 15767316 [Abstract] [Full Text] [Related]
15. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus). Gillis GB, Biewener AA. J Exp Biol; 2001 Aug 01; 204(Pt 15):2717-31. PubMed ID: 11533122 [Abstract] [Full Text] [Related]
16. Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa. Hutchinson JR. J Morphol; 2004 Oct 01; 262(1):421-40. PubMed ID: 15352201 [Abstract] [Full Text] [Related]
17. Hypaxial motor patterns and the function of epipubic bones in primitive mammals. Reilly SM, White TD. Science; 2003 Jan 17; 299(5605):400-2. PubMed ID: 12532019 [Abstract] [Full Text] [Related]
18. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: II. Muscle energy use as indicated by blood flow. Ellerby DJ, Marsh RL. J Exp Biol; 2006 Jun 17; 209(Pt 11):2064-75. PubMed ID: 16709909 [Abstract] [Full Text] [Related]
19. Motor patterns of distal hind limb muscles in walking turtles: Implications for models of limb bone loading. Schoenfuss HL, Roos JD, Rivera AR, Blob RW. J Morphol; 2010 Dec 17; 271(12):1527-36. PubMed ID: 20967829 [Abstract] [Full Text] [Related]
20. Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus). Courtine G, Roy RR, Hodgson J, McKay H, Raven J, Zhong H, Yang H, Tuszynski MH, Edgerton VR. J Neurophysiol; 2005 Jun 17; 93(6):3127-45. PubMed ID: 15647397 [Abstract] [Full Text] [Related] Page: [Next] [New Search]