These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


111 related items for PubMed ID: 15769454

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Time course and mechanisms of phosphorylation of phospholamban residues in ischemia-reperfused rat hearts. Dissociation of phospholamban phosphorylation pathways.
    Vittone L, Mundiña-Weilenmann C, Said M, Ferrero P, Mattiazzi A.
    J Mol Cell Cardiol; 2002 Jan; 34(1):39-50. PubMed ID: 11812163
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. CaMKII-mediated increased lusitropic responses to beta-adrenoreceptor stimulation in ANP-receptor deficient mice.
    Yurukova S, Kilić A, Völker K, Leineweber K, Dybkova N, Maier LS, Brodde OE, Kuhn M.
    Cardiovasc Res; 2007 Mar 01; 73(4):678-88. PubMed ID: 17107670
    [Abstract] [Full Text] [Related]

  • 5. Phosphorylation of phospholamban in ischemia-reperfusion injury: functional role of Thr17 residue.
    Mattiazzi A, Mundiña-Weilenmann C, Vittone L, Said M.
    Mol Cell Biochem; 2004 Aug 01; 263(1-2):131-6. PubMed ID: 15524173
    [Abstract] [Full Text] [Related]

  • 6. Effects on recovery during acidosis in cardiac myocytes overexpressing CaMKII.
    Sag CM, Dybkova N, Neef S, Maier LS.
    J Mol Cell Cardiol; 2007 Dec 01; 43(6):696-709. PubMed ID: 17950750
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Phospholamban is required for CaMKII-dependent recovery of Ca transients and SR Ca reuptake during acidosis in cardiac myocytes.
    DeSantiago J, Maier LS, Bers DM.
    J Mol Cell Cardiol; 2004 Jan 01; 36(1):67-74. PubMed ID: 14734049
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart.
    Valverde CA, Mundiña-Weilenmann C, Reyes M, Kranias EG, Escobar AL, Mattiazzi A.
    Cardiovasc Res; 2006 May 01; 70(2):335-45. PubMed ID: 16516179
    [Abstract] [Full Text] [Related]

  • 16. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction.
    Jensen TE, Rose AJ, Jørgensen SB, Brandt N, Schjerling P, Wojtaszewski JF, Richter EA.
    Am J Physiol Endocrinol Metab; 2007 May 01; 292(5):E1308-17. PubMed ID: 17213473
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. A mechanism for the inactivation of Ca2+/calmodulin-dependent protein kinase II during prolonged seizure activity and its consequence after the recovery from seizure activity in rats in vivo.
    Yamagata Y, Imoto K, Obata K.
    Neuroscience; 2006 Jul 07; 140(3):981-92. PubMed ID: 16632208
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.